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In recent years, considerable
progress has been made in the
field of molecular phylogen-

etics. A significant driving force
has been the increasing technical
ease of DNA sequencing, which has
led to the dominance of primary
sequence data as indicators of the
historical relationships between
taxa. Important advances have
also occurred in the compu-
tational analysis of DNA sequence
data1, such as improved methods
for modelling patterns of
nucleotide substitutions2. How-
ever, the task of phylogenetic
reconstruction using molecular
sequences is not without prob-
lems. To a large extent, these
stem from the fact that the domi-
nant methods for molecular phy-
logeny reconstruction exploit
nucleotide substitutions (plus, 
in some cases, single-site inser-
tions or deletions) as indicators
of divergence or common de-
scent. Convergent evolution of
nucleotide bases, differing substi-
tution rates among sites and lin-
eages3, saturation of mutations at
variable sites4, nonindependent
substitutions among sites5 and functional constraints at
the molecular level6 are just a small sample of the po-
tential caveats that apply when using these types of data.
As a result, phylogenetic hypotheses based on primary
sequence data can sometimes be equivocal7,8, whereas
others can simply be incorrect9,10. The advent of the
genomic era has brought the opportunity to consider
other types of information embedded in DNA sequences.
Here, we consider the phylogenetic use of large-scale
mutations – rare genomic changes (RGCs; Box 1), which
occur relatively infrequently. Researchers have already
started using RGCs for inferring relationships between
living organisms.

Rare genomic changes
We define RGCs as large-scale mutational changes that
have occurred in the genomes of particular clades. Exam-
ples of RGCs (Table 1) include intron indels, retroposon
integrations, signature sequences, changes in organelle
gene order, gene duplications and genetic code variants.
Most RGCs represent changes caused by single (or a 
few) mutational events; in our discussion of RGCs we do
not include genomic characteristics that are, most prob-
ably, the end result of multiple processes (e.g. genomic
compositional contrasts11). Until recently, many studies
mapped RGCs onto existing phylogenies to gain insight
into their mode of evolution. The consensus that has

emerged is that RGCs are often
evolutionarily conserved and
phylogenetically informative. We
believe the time has come 
to turn the question around: what
can RGCs tell us about phy-
logenies themselves?

RGCs provide an independent
source of phylogenetic infor-
mation, largely immune from
some of the problems that affect
primary sequence data. A major
difficulty with this approach is
the identification of these rare
mutations in the clades of inter-
est. However, the increasing auto-
mation of molecular techniques
has brought us to the dawn of the
genomic era where tremendous
amounts of information, freely
available in the primary litera-
ture and public databases, are
generated. Additionally, proto-
cols have been developed for the
targeted identification of many, if
not all, RGCs. Here, we argue that
the application of RGCs to phylo-
genetics can offer new insights
into evolutionary history. Fur-
thermore, in cases where primary
sequence data generate conflict-

ing or equivocal results, RGCs offer an independent way of
evaluating alternative phylogenetic scenarios.

RGCs as ‘Hennigian’ markers
The field of phylogenetics has been strongly influenced by
the founder of the cladistic methodology, the German ento-
mologist Willi Hennig. Hennig argued that only shared
derived characters (synapomorphies; Box 1) should be
used as indicators of common descent. Plotting the distri-
bution of synapomorphies is the essence of cladistic
reconstruction. The principal hindrance to this task is
homoplasy (see Box 1 for definition). In general, character
states that arise rarely will not be prone to extensive con-
vergent or parallel evolution, which should contribute to a
low level of homoplasy. Although the precise frequency of
occurrence of most RGCs has not been robustly estimated,
large-scale mutations are generally rare. Additionally, pre-
cise secondary loss of the character (homoplasy because
of reversion) is likely to be extremely rare for most large-
scale mutations and has been demonstrated to be so in
some cases [e.g. short interspersed element insertions
(SINEs)12; Box 1]. Therefore, with respect to homoplasy,
RGCs might constitute good markers of common descent.
In Table 1, we provide a summary of the characteristics
and phylogenetic applicability of various categories of
RGC, and in the next section we expand on a few examples
published recently to demonstrate their potential use.
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Of fish and flies: intron indels as clade markers
The power and robustness of RGCs is well demonstrated by
the study of Venkatesh et al.13, in which intron indels (Box 1)
were used to investigate fish phylogeny. Venkatesh et al.
identified seven intron positions (in five genes) that are
present in the pufferfish Takifugu rubripes but not in the
homologous genes of mammals. Four introns were also
found in the rhodopsin gene that were present in the ances-
tral chordate rhodopsin gene (as inferred by their presence
in basal chordates, such as lampreys and skates, and in the
more apical lineage of mammals) but were absent in the
pufferfish. Several ray-finned fish species (class Actino-
pterygii) were screened for the presence or absence of these
eleven intron indels, and these data were used to recon-
struct evolutionary relationships13. Only one indel showed
considerable homoplasy and an unclear phylogenetic signal;
all the others were unique synapomorphies able to resolve
phylogenetic relationships. It is noteworthy that some of
the relationships resolved, such as the basal position of
bichirs (Polypterus spp.) within the Actinopterygii, have
proved contentious using primary sequence comparisons.

Another recent use of an intron indel as a phylogenetic
character deals with the placement of the insect order
Strepsiptera within holometabolous insects14. Strepsipteran
forewings resemble the hindwing balancing organs of 
flies (order Diptera), which are known as halteres. Among
other phylogenetic scenarios, an affinity of Strepsiptera to
Coleoptera has been widely discussed, based primarily on
the use of hindwings for flight in both orders. An alternative
proposal is a sister group relationship with Diptera15,16. In
this case, halteres could be homologous, but a radical
homeotic mutation might have reversed their position in
Strepsiptera15. Evidence from morphology is equivocal17

and 18S rDNA sequence data have generated a lively debate
between researchers favouring different phylogenetic recon-
struction methods8,16. Rokas et al. noted a unique intron
insertion in the homeobox of the engrailed gene of Diptera
and Lepidoptera, which is absent from other insects and all
outgroups14. Possession of the intron in Strepsiptera would
support a sister group relationship with Diptera, whereas
its absence would argue against this affinity. Cloning of the
Strepsipteran homologue of engrailed showed that the intron
is absent in Strepsiptera, thus suggesting that the halteres
of Strepsiptera and Diptera might not represent a rare case of
natural homeotic transformation but a remarkable case of
convergent evolution14 (Fig. 1).

Of SINEs and LINEs
Retroposons (Box 1) belong to the group of transposable
elements that use an RNA-mediated mode of transpos-
ition12. Retroposon integrations, especially from the class
of SINEs (retroposons that lack the ability for self-amplifi-
cation), have been used successfully as phylogenetic
markers; an application pioneered by Okada and col-
leagues in the 1990s (Refs 18,19). It has been argued that
SINE integrations come close to being ‘perfect’ markers of
common descent because integration is apparently ran-
dom and irreversible, and because most eukaryotic
genomes have an abundance of SINE elements12. Their
presence or primitive absence can also be readily detected
by PCR amplification across integration sites. Successful
applications of SINEs include the generation of convincing

Table 1. Summary of useful characteristics of rare genomic change (RGC) markers for phylogenetic purposesa

Marker Taxonomic resolution Homoplasy Taxa in which RGCs are
applicable

Intron indels Wide ranging Low Eukaryotes
Retroposons (SINEs and LINEs)b Within orders Zero to very low Animals
Signature sequences Wide ranging Unknown but recognizable All life
mtDNA genetic code variants Phyla to classes Low to moderate Eukaryotes
Nuclear DNA genetic code variants Phyla Low to moderate All life
mtDNA gene order Wide ranging (phyla to families) Low to moderate in animals. High in plants, Eukaryotes

fungi and protists
cpDNA gene order Families Low Plants
Gene duplications Wide ranging Unknown All life
Comparative cytogenetics Within phyla Unknown All life (lateral gene transfer 

is prevalent in prokaryotes)  

aFor more detailed information, see references cited in the text.
bAbbreviations: SINEs, short interspersed elements; LINEs, long interspersed elements.

Box 1. Glossary

Bilateria: the bilaterally symmetrical animals.
Homoplasy: a general term denoting that the acquisition of the same character
state in two taxa is not because of common descent. This can arise by parallel
evolution (independent acquisition from the same ancestral state), conver-
gent evolution (independent acquisition from different ancestral conditions) or
secondary loss (reversion from the derived to the ancestral condition).
Indel: an insertion or deletion event.
LINEs (long interspersed elements): a class of retroposons that are capa-
ble of self-transposition.
Orthology: the relationship between two homologous loci derived from a
speciation event.
Paralogy: the relationship between two homologous loci derived from a
duplication event.
Polyphyly: when a group does not include the most recent common ances-
tor of all its members.
Protein domain: a well defined region within the protein. It can be distin-
guished on the basis of function or structure. For example, the homeo-
domain is a 60-amino acid domain shared by proteins encoded by homeobox
genes.
Protein motif: any stretch of contiguous sequence within a protein that has
been evolutionarily conserved.
Rare genomic change (RGC): a large-scale mutational change that has
occurred in the genome of a particular clade.
Retroposons: the class of transposable elements that relocate in the
genome via an RNA intermediate using the enzyme reverse transcriptase.
Signature sequences: shared conserved insertions or deletions in proteins
or RNAs.
SINEs (short interspersed elements): a particular class of retroposons that
have lost the ability to transpose themselves (to transpose they use another
class of mobile elements, LINEs).
Synapomorphy: a shared derived character state that suggests a mono-
phyletic grouping.
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support for a sister group relationship between whales and
hippopotamuses20, also known as the ‘whippo’ hypothesis
(Fig. 1), and detailed insight into salmonid fish phy-
logeny19. Criticisms of the use of SINEs include the noninde-
pendence of SINE insertions21 (several can be integrated at
the same time, although at different sites), incomplete lin-
eage sorting21,22 (although this applies to all characters),
the considerable amount of work needed for their develop-
ment12 and practical limits to detection beyond ~30%

difference in sequences
flanking orthologous ele-
ments12 (Box 1). In our view,
these are simply factors to be
considered when designing
or interpreting phylogenetic
studies; they do not detract
significantly from the robust-
ness of SINE markers.
Another class of retroposons
are long interspersed ele-
ments (LINEs; Box 1); the
main difference from SINEs
being their ability for self-
amplification. LINEs have
been used not only for deter-
mining the cladogenetic pat-
tern but also for dating speci-
ation events. Verneau 
et al.23 exploited the fact that
LINE elements belonging to
the L1 family rapidly gen-
erate defective copies, which
are retained in the genome
and mutate at the neutral
rate, to resolve and date the
phylogenetic history of the
rodent genus Rattus.

Animals, archaebacteria
and archezoa: the use of
signature sequences
The complementary use of
primary sequence data and
RGCs for phylogenetic pur-
poses is shown by attempts
to reconstruct the inter-
phyletic relationships of ani-
mals. Recent studies using
18S rDNA sequences have
suggested a three-branched
Bilateria (Box 1) tree com-
prising the Deuterostomia,
the Lophotrochozoa and the
Ecdysozoa3. Lophotrocho-
zoans include spiral cleaving
phyla, such as molluscs,
annelids, platyhelminths and
nemerteans, plus the lopho-
phorates; whereas the
Ecdysozoa include arthro-
pods, onychophorans, pri-
apulids and nematodes (all of
which moult). This proposal
was controversial because it
demanded a radical restruc-
turing of the classic tree of
animal phyla. It would also

mean abandoning several well known super phyletic
groupings, such as Acoelomata (animals without a coelom,
which are traditionally basal in the animal tree) and Articu-
lata (segmented protostomes), and implies that some
apparently ‘simple’ animals, such as flatworms, are actu-
ally highly degenerate. Radical hypotheses often require
independent support before they are accepted; in this
case, complementary supporting data have come from
RGCs within the Hox gene clusters24,25. The proteins
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Fig. 1. Examples of rare genomic changes (RGCs) as phylogenetic markers. (a) An intron insertion in the gene
engrailed suggests that Strepsiptera are not a sister group to Diptera (flies)14. (b) Retroposon integrations using
short interspersed elements (SINEs) have established the sister group relationship of whales and hippos, to the
exclusion of other Artiodactyla20. (c) Hox gene signature sequences have robustly supported the division of pro-
tostome invertebrates into the lophotrochozoan and ecdysozoan clades25, and have identified dicyemid mesozoa
as lophotrochozoans26. (d) A codon reassignment in the mitochondrial genetic code suggests that echinoderms
and hemichordates are sister groups34, a result supported by sequence data35. (e) mtDNA gene order in mito-
chondrial genomes supports the common grouping of insects and crustaceans, with myriapods as an out-
group39. (f) Repeated events of gene duplication have occurred in the lineage leading to vertebrates46.
Photographs reproduced, with permission, from G. Brown (fly/whale/flatworm/earthworm/crustacean/myriapod/
starfish/fish/lamprey), S. Ferguson (hippo), P. Holland (butterfly), A. Rokas (Strepsiptera), M. Kobayashi
(mesozoa), D. Remsen and the Marine Biological Laboratory (hemichordate) and J. Pemberton (deer).
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encoded by many Hox genes possess specific sequence
motifs near the homeodomain, which is a domain common
to all Hox genes. These sequence motifs have helped dis-
tinguish orthologous and paralogous (Box 1) Hox genes.
Each of the three major clades has its own unique Hox
genes that do not have identifiable orthologues in the oth-
ers. In other words, gene duplications have yielded distinct
genes in each lineage and these have acquired unique sig-
nature protein motifs (Box 1). For example, the lopho-
trochozoans share Lox2, Lox4, Lox5, Post-1 and Post-2,
whereas the ecdysozoans share Ubx and Abd-B (Ref. 25).

As well as providing independent support for the con-
troversial Lophotrochozoa and Ecdysozoa clades, this
approach has been used to investigate the affinities of a
particularly enigmatic animal phylum: the dicyemid meso-
zoa26. These are microscopic parasites of squid and octo-
pus, with an amazingly simple body plan consisting of a
solitary axial cell surrounded by a single layer of 10–40 cili-
ated outer cells. Morphology and 18S rDNA sequence data
have previously failed to adequately resolve their phylogen-
etic position. Recently, Kobayashi et al.26 cloned the Lox5
gene from a dicyemid, including the diagnostic Lox5 pep-
tide, thus demonstrating that these animals are almost cer-
tainly highly degenerate members of the Lophotrochozoa
clade (Fig. 1). Indeed, dicyemids represent one of the most
extreme cases of secondary simplification of morphology
known in the animal kingdom.

The Hox gene data represent a special case of ‘signa-
ture sequences’ (Box 1). In Hox genes, the existence of dis-
tinct signature sequences in different genes, and in differ-
ent clades, suggests that these motifs (such as the Lox5
peptide) have biochemical functions. In other examples,
insertions might have little functional significance;
nonetheless, they can be used as RGCs for phylogenetic
reconstruction; for example, there is an ongoing debate in
prokaryote phylogenetics about whether archaebacteria
are monophyletic. Recently, the paraphyly hypothesis of
archaebacteria has been supported by several signature
sequences27,28. However, it should be noted that historical
associations within prokaryotes are still incompletely
resolved owing to extensive subsequent gene transfer. No
molecular marker is immune from this all-pervading com-
plication29; for example, a signature sequence in the gene
hsp70 used to support the paraphyly of archaebacteria28 is
also present in one of the three copies of the gene in
Escherichia coli, suggesting a possible recent transfer4.
Other important studies using the signature-sequence
approach include a confirmation that the archezoa are
true eukaryotes that have lost mitochondria30, and an
investigation of branchiopod crustacean phylogeny31. In
branchiopod crustaceans, three unique helices in
18S rDNA were used to distinguish cladocerans from other
branchiopods, demonstrating that useful sequences can
be found in RNA, as well as in protein sequences.

Deviant codes and shuffled genes
Several organisms use genetic codes that deviate from 
the standard ‘universal’ code. These ‘deviant’ codes can be
useful markers for higher level phylogenetics. Keeling and
Doolittle32 showed that a genetic code in which TAA and
TAG codons encode glutamine, rather than termination, is
used by almost all diplomonads, with the exception of the
genus Giardia, which employs the standard genetic code.
This argues for an early divergence of Giardia in the evolu-
tion of diplomonads and is in agreement with phylogenies
from primary sequence data32. The diplomonad deviant
code has also been found in certain green algae and in

ciliates, showing that homoplasious changes can occur.
Mitochondrial genomes have the widest variety of deviant
codes, whereas plastids show no deviation from the uni-
versal (so far)32,33. Variant mtDNA codes in animals have
been studied in some detail, aided by complete sequences
of mtDNA from a wide range of animals. For example, a
sister group relationship between echinoderms and hemi-
chordates is supported by the assignment of the ATA codon
to the amino acid isoleucine34, as well as by sequence
analyses35 (Fig. 1), although the same reassignment has
occurred independently in Cnidaria.

Gene order changes, particularly in circular genomes
such as mitochondria and chloroplasts, comprise another
type of RGC that has already proved useful in phylogen-
etics36. These arrangements, effected by inversions, trans-
locations and duplications, generally affect several adjacent
genes. They are unlikely to be reversed precisely because
of their complexity; therefore, they satisfy one of the prin-
cipal criteria demanded of the perfect phylogenetic
marker. The second criterion, low levels of homoplasy, is
also predicted to be true because convergence or paral-
lelism would imply bias towards particular gene rearrange-
ments or gene orders. Isolated cases of convergence have
been detected37, suggesting bias in some taxa; however,
this does not seem to be a widespread problem. Some key
phylogenetic problems have been tackled using mtDNA
order as a marker, with definitive results. For example,
until recently it was widely accepted that insects and myria-
pods were close relatives within the arthropods; indeed,
these two primarily terrestrial taxa share many derived
morphological characters. Several lines of evidence,
including developmental data and primary sequence com-
parisons, have challenged this relationship, raising the
alternative possibility of a crustacean–insect clade38. This
suggestion is effectively confirmed by the shared presence
of a rare tRNA translocation within insects and crustacean
mtDNA, which is not seen in myriapods, chelicerates, tardi-
grades, onychophorans or outgroups39 (Fig. 1). In most ani-
mal taxa, changes to mtDNA gene order are rare, making
these markers useful for higher level phylogenetics39,40;
although one exception might be the gastropod molluscs,
where mtDNA gene order is extremely variable41. Similarly,
plant, fungi and protist mtDNAs display rapid genome
reshaping, making gene order a more appropriate marker
for lower-level phylogenetics42.

Chloroplast DNA (cpDNA) gene order has been
exploited in a similar way to mtDNA gene order. For exam-
ple, in 1987 Jansen and Palmer used a cpDNA inversion
within the sunflower family to propose the basal position
of the Barnadesiinae, with implications for biogeography
and morphological evolution in this group43. More
recently, Doyle et al.44 surveyed 132 legume genera for the
occurrence of a 50 kb inversion, finding evidence that at
least two tribes within the legumes were polyphyletic. A
qualitatively different sort of rearrangement from those
discussed above is deletion. For example, monophyly of
the conifers is supported by loss of one copy of an inverted
repeat found in cpDNA (Ref. 45).

Other potential RGCs
The list of RGCs we have described so far is not exhaustive;
several other categories of large-scale mutation exist,
some of which have potential for phylogenetics. For exam-
ple, gene duplications have not yet been widely exploited.
One difficulty is technical: unless a family of genes is
arranged in a tandem array, discerning whether a dupli-
cated copy of a gene exists is difficult because absence of
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evidence does not equate with evidence for absence. This
problem cannot be definitively overcome except by the
acquisition of complete genome sequences. Until this
becomes faster, easier and cheaper, gene duplications
represent a potentially untapped source of markers.

Gene families that have proved most amenable for tracing
gene duplications include Hox genes and globin genes. It is
no coincidence that these form stereotyped clustered
arrangements that permit extra genes to be readily cloned.
In the case of Hox genes, duplication of the entire gene clus-
ter is deduced to have occurred on the vertebrate lineage,
after divergence from the cephalochordate (amphioxus)
lineage46. This dispels the view that cephalochordates are
degenerate vertebrates (Fig. 1), although in reality this
notion has had few supporters in the past century. There is
also good evidence that the Hox gene clusters underwent
additional duplications somewhere within the ray-finned
fish lineage; however, more taxa need to be surveyed be-
fore this event can be used as a phylogenetic marker47.
Although gene duplications are sufficiently widespread to
be used as phylogenetic markers, there is still the potential
for homoplasy. If new genes can be exploited for new roles
(or to refine old roles), convergent duplication and reten-
tion is an ever present possibility. Somewhat paradoxi-
cally, gene losses might prove more useful markers than
gene duplications. Although homoplasy is still a real possi-
bility, at least reversion is virtually impossible. For exam-
ple, after an additional round of Hox gene cluster dupli-
cations in ray-finned fish, approximately 21 individual gene
losses (plus one cluster loss) must have occurred in the
lineage leading to zebrafish (Danio rerio)47. This large num-
ber of independent events provides great scope for refine-
ment of ray-finned fish phylogeny.

The study of the differences in chromosome structure
and appearance between species has given rise to the field
of comparative cytogenetics48,49: another source of RGCs
that are potentially useful for phylogenetics. By comparing
chromosomes, a phylogeny can be constructed based on
the minimum number of rearrangements required or the
maximum number of shared segments. Existing data are
limited and come mainly from mammals, but there are
exciting prospects49. As partial and complete genome
sequences are obtained from an ever-growing number of
species, the resolution of this approach can be greatly
refined. Inversions, translocations and duplications, at the
scale of one to a few genes, have occurred extensively in
eukaryotic nuclear genomes and should provide a plethora
of phylogenetic markers in the future.

A concluding mix of caution and optimism
One obstacle that makes some researchers feel uneasy
about the use of RGCs is the absence of statistical evalu-
ation4,22. This concern stems mainly from analogy with pri-
marily sequence comparisons. Understanding the forces
that shape sequence evolution is a necessary prerequisite
to using sequence data for phylogenetics and for evaluat-
ing the statistical robustness of trees. To reach the same
degree of sophistication in the analysis of RGCs demands
greater knowledge about the mechanisms that generate
RGCs because this will affect their rate of production, char-
acter independence, mutational biases and reversibility.
Some of these parameters are reasonably well understood
for some RGCs (notably SINE insertions and gene losses),
but there is much more to be learnt. Nonetheless, the use-
fulness of several categories of RGC has been tested by
comparison with phylogenies inferred by other methods
(morphological and molecular). With few exceptions,

RGCs have performed exceptionally well. Therefore, we feel
that ‘psychological constraints’4 about statistical evaluation
should be put aside, while applicability and robustness are
tested further. Additionally, we stress that the ‘Hennigian’
framework is not the only one that can be employed when
attempting to reconstruct a phylogeny based on RGCs. A
statistical approach is also possible (e.g. maximum likeli-
hood and Bayesian analysis) and will surely be of help,
especially as more ‘messy’ data sets are obtained.

It is an inescapable (if uncomfortable) fact that a few
good characters might contain more phylogenetic ‘truth’
than many poor ones. We do not suggest that all RGCs are
necessarily ‘good’ markers; we certainly do not propose
that they are a panacea for phylogenetics. Indeed, we have
already alluded to cases of convergence, parallelism and
reversion. However, we do believe that the suite of charac-
ters that we refer to as RGCs harbours enormous potential.
They have already contributed some robust insights into
important phylogenetic debates, such as the origin of
whales, arthropod relationships, deuterostome phylogeny
and diversification of the protostome invertebrates. Each
of these ‘new’ phylogenies has wider implications, not only
for evolutionary biology but also for biogeography, devel-
opmental biology and other areas. In a time when the acqui-
sition of molecular data is outpacing analysis, it is worth
recalling Darwin’s comment50: ‘...we possess no pedigrees
or armorial bearings; and we have to discover and trace the
many diverging lines of descent in our natural genealogies,
by any characters which have long been inherited.’
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