GENOMICS

Variations in the genomes: Genetic variability and phenotype

Department of Genetics, Eötvös Loránd University

Human Evolutionary Genetics, Jobling, 2004

Human Y Chromosome Base-Substitution Mutation Rate Measured by Direct Sequencing in a Deep-Rooting Pedigree

Y chromosome resequencing:

Illumina

Forensic Science International: Genetics 4 (2010) 59-61

Contents lists available at ScienceDirect

Forensic Science International: Genetics

journal homepage: www.elsevier.com/locate/fsig

Review

The hare and the tortoise: One small step for four SNPs, one giant leap for SNP-kind

Yali Xue, Chris Tyler-Smith*

The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK

ARTICLE INFO

Article history: Received 31 July 2009 Accepted 6 August 2009

Keywords: Next-gen sequencing Y-SNP Y-STR Haplotype resolution Forensic applications

ABSTRACT

A recently published study has used next-gen sequencing technology to resequence two Y chromosomes separated by 13 generations and discovered four single-base differences in ~10 Mb DNA, suggesting that the Y chromosome euchromatin accumulates around one mutation per generation. Y-SNPs therefore now offer the best resolution of Y haplotypes and promise to distinguish almost every Y chromosome. This work illustrates the promise of current sequencing technology for forensically relevant applications. © 2009 Elsevier Ireland Ltd. All rights reserved.

Pseudoautosomal region II: 0.32 Mb recombination with the X not obligatory

-markers localisation: euchromatin

Y_DYS391

11

DYS537

Y_DYS392

13 12

13 12

DYS406S1(G)

DYS568(Y) DYS480(B)

L_DYS393 Y_DYS438 V_DYS635

11 22

11

22

DYS572(G)

12

LY_GATA_

11 11

DYS540(Y)

R_DYS438 R_DYS448

10 19

10 19 11

DYS476(B)

11 12 12 11 11 11 8

DYS554(B)

9 11

DYS492(G)

DYS497(G)

Illumina / Solexa NGS genome sequencing

Sequencing by reversible dye terminators

Observed mutations in Y chromosome euchromatic region

Table 2. Details of the Filtered Candidate Mutations

		DFNY1_101	Pileup	DFNY1_66	Pileup	Confirmation	
Chromosome Coordinate	Base	Coverage	Calls ¹	Coverage	Calls ¹	Cell-Line DNA	Blood DNA
First Class							
chrY:3,957,219	G	7	AAaaAAA	10	GGgGGGGgGG	Yes	No
chrY:4,633,474	С	4	tttT	6	cCCccc	Yes, het	No
chrY:4,939,256	т	13	cCccCcccCCCCC	13	TTTTTTTTTttttttt	Yes	No
chrY:4,980,623	т	5	99999	7	TUTTTT	Yes, het	No
chrY:5,355,809*	С	12	TtTTTTTTttt	9	cCccccCcC	Yes	Yes
chrY:6,555,594	G	13	TgTttTTtTTT	12	GGGGGGGGGGGGG	No	
chrY:7,381,330	G	7	cCcCCCc	12	GGGGGGGGGGGGG	No	
chrY:12,063,011	С	5	gggGG	8	00000000	Yes	No
chrY:14,745,277*	Α	9	TtTTtTttt	6	aaAaAa	Yes	Yes
chrY:15,126,873	Т	7	cccCccc	8	tttTttTT	Yes	No
chrY:15,146,905*	т	4	CCcC	9	tTtTTTTT	Yes	Yes
chrY:20,627,064	С	9	gGGgGGGG.	5	Ccccc	Yes	No
chrY:27,095,961	т	7	CCcCCCc	8	TTtttTtt	Yes	No
chrY:2,971,542*	Α	4	aAAA	14	tTTtTttttttt	Yes	Yes
chrY:4,097,585	С	7	CCcaacc	2	aa	No	
chrY:4,876,956	т	11	aatTTTTTTTT	4	AAAA	No	
chrY:11,970,133	т	10	tttTTTTTt	6	aaAAaa	No	
chrY:19,883,785	Α	5	aAaaA	4	occc	No	
Second Class							
chrY:13,445,456	G	4	GGGg	1	t	No	
chrY:13,568,272	G	13	aAAggggggggggg	11	aaaAaAaaAAa	No	
chrY:13,833,351	С	17	cCccCCggccCcCcccc	16	CCcCcCcCttCtttc	No	
chrY:14,573,532	Α	21	GAAAAaaAaAAaAaAAaAAa	5	AAggg	No	
chrY:15,375,202	G	4	GGGg	4	TTTT	No	

An asterisk denotes mutations that were confirmed in blood DNA.

¹Upper case = forward strand; lower case = reverse strand.

ARTICLE

A global reference for human genetic variation

The 1000 Genomes Project Consortium*

The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.

An integrated map of structural variation in 2,504 human genomes

A list of authors and their affiliations appears at the end of the paper.

Structural variants are implicated in numerous diseases and make up the majority of varying nucleotides among human genomes. Here we describe an integrated set of eight structural variant classes comprising both balanced and unbalanced variants, which we constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks in 26 human populations. Analysing this set, we identify numerous gene-intersecting structural variants exhibiting population stratification and describe naturally occurring homozygous gene knockouts that suggest the dispensability of a variety of human genes. We demonstrate that structural variants are enriched on haplotypes identified by genome-wide association studies and exhibit enrichment for expression quantitative trait loci. Additionally, we uncover appreciable levels of structural variant complexity at different scales, including genic loci subject to clusters of repeated rearrangement and complex structural variants with multiple breakpoints likely to have formed through individual mutational events. Our catalogue will enhance future studies into structural variant demography, functional impact and disease association.

| NATURE | VOL 526 | 1 OCTOBER 2015

Building a haplotype scaffold

(2b) Independent genotyping and phasing of multi-allelic and complex variants onto haplotype scaffold.

dol:10.1038/neture15393

RESEARCH SUPPLEMENTARY INFORMATION

	Autosomes	Exome target regions**	chrX***	chrY***	Totals
Samples	2,504	2,504	2,504	1,233	-
Total Raw Bases (Gb)	85,426	18,273	3,213	291	-
Mean Mapped Depth (X)*	8.45	75.25	6.20	2.60	-
Total Variant Sites	84,801,880	1,416,049	3,468,093	62,042	88,332,015
Biallelic SNPs	81,102,777	1,383,927	3,223,927	60,505	84,387,209
Indels	3,196,364	19,832	212,196	1,427	3,409,987
Mean Indel Length (bp)	2.94	3.46	2.64	2.00	-
Multiallelic sites	444,026	6,153	30,996	-	475,022
Multiallelic SNPs	274,425	4,706	15,055	-	289,480
Multiallelic Indels	169,601	1,447	15,941	-	185,542
Structural Variants	58,713	6,137	974	110	59,797
ALU Insertion	12,491	52	-	-	12,491
LINE1 Insertion	2,910	10	-	-	2,910
Large Deletion	33,336	2,684	974	-	34,310
Duplication	5,896	2,513	-	-	5,896
SVA Insertion	822	5	-	-	822
Other Insertion	165	1	-	-	165
Inversion	100	8	-	-	100
CNV	2,993	864	-	110	3,103

Supplementary Information Table 3: Integrated callset summary. *Assuming 2.84Gb as the genome size. The mapping of exome sequence to targeted pull down regions was calculated by Picard function *calculateHsMetrics.* **The exome targeted regions were exome pulldown targets derived from CCDS (NimbleGen EZ Exome v1 and Agilent SureSelect v2). These variant totals are included in the other columns. ***chrX and chrY statistics are for the entire chromosomes.

- a typical genome differs from the reference human genome at 4.1 million to 5.0 million sites.
- >99.9% of variants consist of SNPs and short indels.
- structural variants affect more bases:
- typical genome contains an estimated 2,100 to 2,500 structural variants (1,000 large deletions, 160 copy-number variants, 915 Alu insertions, 128 L1 insertions, 51 SVA insertions, 4 NUMTs and 10 inversions) affecting 20 million bases of sequence.

Population sampling

nature

A global reference for human genetic variation

The 1000 Genomes Project Consortium*

Table 1 | Median autosomal variant sites per genome

	AF	R	AN	/IR	E/	4S	EL	JR	S	AS
Samples Mean coverage	661 8.2		3	347 7.6	5	504 503 7.7 7.4		489 8.0		
	Var. sites	Singletons	Var. sites	Singletons	Var. sites	Singletons	Var. sites	Singletons	Var. sites	Singletons
SNPs Indels	4.31M 625k	14.5k	3.64M 557k	12.0k	3.55M 546k	14.8k - 7	3.53M 546k	11.4k - 5	3.60M 556k	14.4k
CNVs	170	1	153	1	158	1	157	1	165	1
MEI (Alu)	1.03k	0	845	0	899	1	919	0	889	0
MEI (L1)	138	0	118	0	130	0	123	0	123	0
MEI (SVA)	52	0	44	0	56	0	53	0	44	0
MEI (MT)	5	0	5	0	4	0	4	0	4	0
Inversions	12 12.2k	0	9 10.4k	0	10 10.2k	0	9 10.2k	0	11 10.3k	0 144
Synon	13.8k	78	11.4k	67	11.2k	79	11.2k	59	11.4k	78
Intron	2.06M	7.33k	1.72M	6.12k	1.68M	7.39k	1.68M	5.68k	1.72M	7.20k
UTR	37.2k	168	30.8k	136	30.0k	169	30.0k	129	30.7k	168
Promoter	102k	430	84.3k	332	81.6k	425	82.2k	336	84.0k	430
Insulator	70.9k	248	59.0k	199	57.7k	252	57.7k	189	59.1k	243
Enhancer	354k	1.32k	295k	1.05k	289k	1.34k	288k	1.02k	295k	1.31k
TFBSs	927	4	759	3	748	4	749	3	765	3
Filtered LoF	182	4	152	3	153	4	149	3	151	3
HGMD-DM	20	0	18	0	16	1	18	2	16	0
GWAS	2.00k	0	2.07k	0	1.99k	0	2.08k	0	2.06k	0
ClinVar	28	0	30	1	24	0	29	1	27	1

See Supplementary Table 1 for continental population groupings. CNVs, copy-number variants; HGMD-DM, Human Gene Mutation Database disease mutations; k, thousand; LoF, loss-of-function; M, million; MEI, mobile element insertions.

GWAS: Genome wide association studies

SNP array

Manhattan plot

Significance threshold $p < 10^{-8}$ (Negative logarithm of p-value)

Gibson G, A primer of Human genetics, 2015

Welcome Trust Case Control Consortium 2007

360K SNP array Case samples: 2.000 Controls: 3.000 Significance threshold: p < 10⁻⁵

23 associations:

-No in bipolar disorder

- -1 coronary artery
- -3 diabetes type 2
- -7 diabetes type 1
- -9 Crohn's disease

GWAS: genotyping

-Illumina Infinium II -Affymetrix Axiom (Copy Number Variation)

Gibson G, A primer of Human genetics, 2015

GWAS: Genome wide association studies

Published GWA Reports, 2005 – 2013

www.genome.gov/gwastudies/

www.genome.gov/gwastudies/

Autosome SNPs in the Human Genome

TABLE 12.2 Categories of SNP Markers (See Budowle & van Daal 2008, Butler et al. 2008).

Category	Characteristics	Examples
Identity SNPs Individual Identification SNPs (IISNPs)	SNPs that collectively give very low probabilities of two individuals having the same multi-locus genotype	FSS 21plex (Dixon et al. 2005) SNPforID 52plex (Sanchez et al. 2006) Kidd group SNPs (Pakstis et al. 2010)
Lineage SNPs Lineage Informative SNPs (LISNPs)	Sets of tightly linked SNPs that function as multi-allelic markers that can serve to identify relatives with higher probabilities than simple bi-allelic SNPs	mtDNA coding region SNPs (Coble et al. 2004) Japanese Y-SNPs (Mizuno et al. 2010) Haplotype blocks (Ge et al. 2010)
Ancestry SNPs Ancestry Informative SNPs (AISNPs)	SNPs that collectively give a high probability of an individual's ancestry being from one part of the world or being derived from two or more areas of the world	SNPforID 34plex (Phillips et al. 2007b) 24 SNPs (Lao et al. 2010) FSS YSNPs (Wetton et al. 2005)
Phenotype SNPs Phenotype Informative SNPs (PISNPs)	SNPs that provide a high probability that the individual has particular phenotypes, such as a particular skin color, hair color, eye color, etc.	Red hair (Grimes et al. 2001) "Golden" gene pigmentation (Lamason et al. 2005) IrisPlex eye color (Walsh et al. 2010)

The human melanogenesis

Keratinocyte

Genes underlying skin pigmentation

Locus	Chromosome	Protein	Mut phenotype	Function
Melanosome protei	ins			
TYR	11q14-11q21	Tyrosinase	OCA1	Oxidation of tyrosine
TYRP1	9p23	Gp75, TRYP1	OCA3	DHICA-oxidase, TYR stabilisation
DCT	13q32	DCT, TRYP2		Dopachrome tautomerase
OCA2	15q11.2-15q12	P-protein	OCA2 (eye)	pH of melanosome
SLC45A2	5p14.3-5q12.3	MATP, AIM-1	OCA4 (skin)	Melansome maturation
SLC24A5	15q21.1	Cation exchanger		Melanosome precursor
Signal proteins				
ASIP	20q11.2-20q12	Agouti signal protein		MC1R antagonist
MC1R	16q24.3	MSH receptor	Red hair (skin)	G-protein coupled receptor
POMC	16q24.3	MSH receptor	Red hair	MC1R antagonist
OA1	Xp22.3	OA1 protein	OA1	G-protein coupled receptor
MITF	3p12.3-3p14.1	MITF	Waardenburg	Transcription factor
Proteins involved i	n melanosome transport or upt	ake by keratinocytes		
MYO5A	15q21	MyosinVa	Griscelli	Motor protein
RAB27A	15q15-15q21.1	Rab27a	Griscelli	RAS family protein
HPS1	10q23.1-10q23.3	HPS1	Hermansky-Pudlak	Organelle biogenesis and size
HPS6	10q24.32	HPS6	Hermansky-Pudlak	Organelle biogenesis

Principal skin pigmentation candidate genes

ACTH: adrenocorticotrophin hormone; DCT: dopachrome tautomerase; DHICA: 5,6-dihydroxyindole-2-carboxylic acid; MATP: membrane-associated transporter protein; MC1R: melanocortin-1 receptor; MITF: microphthalmia-associated transcription factor; MSH: melanocyte stimulating hormone; OCA: oculocutaneous albinism; POMC: pro-opiomelanocortin; TYRP1: tyrosinase-related protein 1.

MC1R gene mutation

Mutation	Туре	Designation	Penetrance (odds ratio)	Functional significance	References (for functional significance and penetrance)
R151C	Mis-sense	R	63.3	Altered cellular location	[16,26]
R160W	Mis-sense	R	63.3	Altered cellular location	[16,26]
D294H	Mis-sense	R	63.3	Impaired G coupling ability	[26,27]
D84E	Mis-sense	R	63.3	Altered cellular location	[16,26]
1155T	Mis-sense	Lack of statistica ciation	al data—strong familial asso-	Altered cellular location	[16,26]
V92M	Mis-sense	r	5.1	Reduced a-MSH binding	[26,28,29]
V60L	Mis-sense	r	5.1	the second same is a state of the second state	[26]
R163Q	Mis-sense	r	5.1	Slightly reduced a-MSH binding	[26,29]
R142H	Mis-sense	Lack of statistica ciation	al data—strong familial asso-		[26]

Mutations in the MC1R gene, their penetrance and functional significance (where known)

- MC1R allele variants possess different activities
- 317 amino acids, 7 transmembrane domains
- SNPs, RHC phenotype
- Neanderthal pigmentation
- Genetic tests, phenotype prediction

SNPs located in pigmentation genes

- ASIP (aguti): 3'UTR 8818A MSH anagonist phaeomelanin production
- MATP: melanosome pH regulation, 374Leu allele dark colour, albinism
- SLC24A5: "gold" gene, zebrafish, Ala111Thr allele, light shade, fixed in kaukasoid race, selection?
- OCA2: albinism gene, 305 Arg/Trp, Africa / Europe

Gene	Location	Protein	Reference SNP ID (rs#) ^a	Alleles	Variation type
MCIR	16q24.3	MC1R: melanocortin 1	rs1805007	C/T	ns coding, c.451C>T, p.R151C
		receptor	rs1805008	C/T	ns coding, c.478C>T, p.R160W
HERC2	15q13	Unknown	rs12913832	A/G	Non-coding, intron 86
OCA2	15q11.2-15q12	P-protein: NA+/H+	rs7495174	T/C	Non-coding, intron 1
	antiporter or glutamate	rs6497268 or rs4778241	G/T		
	transporter	rs11855019 or rs4778138	T/C		
	2 5-12.2		rs1545397	G/A	Non-coding intronic
SLC45A2	5p13.3	MATP: membrane- associated transporter protein	rs16891982	C/G	ns coding, c.1122C>G, p.F374L
<i>SLC24A5</i>	15q21.1	SLC24A5 (or NCKX5): solute carrier family 24, member 5; potassium- dependent sodium- calcium ion exchanger	rs1426654	G/A	ns coding, p.A111T
DCT	13q32	DCT or TYRP2/TRP-2: dopachrome tautomerase or tyrosinase-related protein-2	rs2031526	G/A	Non-coding, intronic

ns non-synonymous

^b Reference SNP ID refer to the reference sequence identifier given to the SNP in the dbSNP database

SNaPshot: A Primer Extension Assay Capable of Multiplex Analysis

Minisequencing (SNaPshot assay) Allele-specific primer extension across the SNP site with fluorescently labeled ddNTPs; mobility modifying tails can be added to the 5'-end of each primer in order to spatially separate them during electrophoresis.

(b) (TTTTT)-primer1 (chromosome 20)-ddT/ddT

(TTTTT)-(TTTTT)-primer2 (chromosome 6)-ddC/ddT

(TTTTT)-(TTTTT)-(TTTTT)-primer3 (chromosome 14)-ddC/ddT

(TTTTT)-(TTTTT)-(TTTTT)-primer4 (chromosome 1)-ddC/ddC

FIGURE 12.2 Allele-specific primer extension results using four autosomal SNP markers on two different samples (a). SNP loci are from separate chromosomes (1, 6, 14, and 20) and therefore unlinked. Electrophoretic resolution of the SNP primer extension products occurs due to poly(T) tails that are 5 nucleotides different from one another (b). Butler, J.M. (2011) Advanced Topics in Forensic DNA Typing, p. 354

10 pigmentation genes SNP genotyping (SNaPshot)

Sample	Self-reported pigmentary traits		rs12913832	rs1805007	rs1805008	008 OCA2 rs16891982 diplotype ^a SLC24A2	rs16891982 rs1426654 rs20315 SI C24A2 SI C24A5 DCT	s1426654 ts2031526 ts1545397	Inferred ancestry of individuals ^b					
	Eye color	Hair color	Skin color	TIERC2	MCIK	WC IK	uplotype	3102472	3002443	ber	OCA2	European	Asian	African
E1	Blue	Red	Fair	G/G	C/C	C/T	TGT/TGT	G/G	A/A	G/G	A/A	0.963	0.012	0.024
E2	Green	Light brown	Fair	G/G	C/C	C/C	TGT/TGT	G/G	A/A	A/G	A/A	0.954	0.021	0.025
E3	Blue	Blond	Fair	G/G	C/C	C/C	TGT/TGT	G/G	A/A	A/G	A/A	0.954	0.024	0.022
E4	Blue	Blond	Fair	G/G	C/C	C/C	TGT/TGT	G/G	A/A	A/G	A/A	0.960	0.020	0.020
E5	Blue/gray	Auburn	Fair	G/G	C/T	C/C	TGT/TGT	G/G	A/A	G/G	A/A	0.961	0.013	0.026
E6	Green/gray	Light brown	Fair	G/G	C/C	C/C	TGT/TGT	C/G	A/A	G/G	A/A	0.787	0.038	0.175
E7	Green/hazel	Light brown	Fair	A/G	C/C	C/C	TGT/TGT	G/G	A/A	A/G	A/A	0.955	0.022	0.024
E8	Green/hazel	Dark brown	Fair	A/A	C/C	C/C	TGT/CTC	G/G	A/A	G/G	A/A	0.961	0.013	0.027
E9	Green/hazel	Dark brown	Fair	A/A	C/C	C/C	TTT/CTC	G/G	A/A	G/G	A/A	0.963	0.013	0.024
E10	Blue	Light brown	Fair	G/G	C/C	C/C	TGT/TGT	C/G	A/A	G/G	A/A	0.789	0.049	0.163
E11	Green	Auburn	Fair	G/G	C/T	C/C	TGT/TGC	G/G	A/A	G/G	A/A	0.958	0.014	0.028
E12	Blue/hazel	Light brown	Fair	A/G	C/C	C/C	TGT/TTT	G/G	A/A	G/G	A/A	0.962	0.012	0.026
E13	Blue/hazel	Light brown	Fair	A/G	C/C	C/C	TGT/TTT	G/G	A/A	G/G	A/A	0.965	0.013	0.022
E14	Green	Light brown	Fair	G/G	C/C	C/C	TGT/TGT	C/G	A/A	G/G	A/T	0.763	0.165	0.073
E15	Brown	Dark brown	Fair	A/G	C/C	C/C	TGT/TGT	G/G	A/A	A/G	A/A	0.957	0.022	0.021
E16	Brown	Dark brown	Fair	A/A	C/C	C/C	TGT/CTC	C/G	A/A	A/G	A/T	0.669	0.283	0.048
E17	Green/hazel	Dark brown	Medium	A/G	C/C	C/C	TGT/TTT	C/G	A/A	G/G	A/T	0.755	0.170	0.076
E18	Blue	Light brown	Fair	G/G	C/C	C/C	TGT/TGT	G/G	A/A	G/G	A/T	0.935	0.045	0.021
E19	Brown	Red	Fair	A/G	C/T	C/C	TGT/TGT	G/G	A/A	G/G	A/A	0.964	0.013	0.022
E20	Green	Light brown	Fair	G/G	C/C	C/C	TGT/TGT	C/G	A/A	G/G	A/A	0.792	0.047	0.161
E21	Green/gray	Blond	Fair	G/G	C/C	C/C	TGT/TGT	G/G	A/A	A/G	A/A	0.957	0.022	0.021
E22	Blue	Light brown	Fair	G/G	C/C	C/C	TGT/TGT	G/G	A/A	G/G	A/A	0.959	0.014	0.026
E23	Green/hazel	Light brown	Fair	A/G	C/C	C/C	TGT/TTT	G/G	A/A	A/G	A/A	0.957	0.020	0.022
E24	Green	Light brown	Fair	G/G	C/C	C/C	TGT/TGT	C/G	A/A	G/G	A/A	0.786	0.049	0.166
E25	Brown	Red	Fair	A/G	C/C	T/T	TGT/TGC	G/G	A/A	G/G	A/A	0.963	0.014	0.023
E26	Blue	Light brown	Fair	G/G	C/C	C/C	TGT/TGT	G/G	A/A	A/G	A/A	0.954	0.021	0.025
E27	Blue	Red	Fair	G/G	C/C	C/T	TGT/TGT	G/G	A/A	G/G	A/A	0.958	0.014	0.028
Afl	Brown	Black	Dark	A/A	C/C	C/C	TGC/TTC	C/C	G/G	A/G	A/A	0.028	0.094	0.878
Af2	Brown	Black	Dark	A/A	C/C	C/C	TGC/TTC	C/C	G/G	G/G	A/A	0.023	0.031	0.946
Af3	Brown	Black	Dark	A/A	C/C	C/C	TGC/TTC	C/C	A/G	G/G	A/A	0.164	0.041	0.795
Asl	-	-	-	A/A	C/C	C/C	TTT/CTC	C/C	G/G	A/G	A/T	0.042	0.649	0.308
As2	-		-	A/A	C/C	C/C	CTC/CTC	C/C	G/G	A/G	T/T	0.020	0.921	0.060
As3	-	-	-	A/A	C/C	C/C	CTC/CTC	C/C	G/G	A/A	T/T	0.013	0.964	0.023
As4	-	-	-	A/G	C/C	C/C	TTT/CGC	C/C	A/G	A/A	A/T	0.212	0.708	0.080
As5	-	-	120	A/A	C/C	C/C	TTC/CGC	C/C	G/G	A/G	T/T	0.019	0.922	0.059
As6	-	-	-	A/A	C/C	C/C	CTC/CTC	C/G	G/G	A/A	T/T	0.119	0.858	0.023

E European modern sample, Af African modern sample, As Asian modern sample

^a OCA2 diplotype correspond to markers rs7495174/rs6497268/rs11855019. OCA2 diplotype and rs12913832 genotype predictive of blue eye color phenotype are underlined

^b Probability of being from European/Asian/African population determined using the STRUCTURE program. The greatest probability, most likely estimate of ancestry, is indicated in bold

Mutation rate of polymorph sequences (μ)

Human Evolutionary Genetics, Jobling, 2004

Large-Scale Copy Number Polymorphism in the Human Genome

Jonathan Sebat,¹ B. Lakshmi,¹ Jennifer Troge,¹ Joan Alexander,¹ Janet Young,² Pär Lundin,³ Susanne Månér,³ Hillary Massa,² Megan Walker,² Maoyen Chi,¹ Nicholas Navin,¹ Robert Lucito,¹ John Healy,¹ James Hicks,¹ Kenny Ye,⁴ Andrew Reiner,¹ T. Conrad Gilliam,⁵ Barbara Trask,² Nick Patterson,⁶ Anders Zetterberg,³ Michael Wigler^{1*}

The extent to which large duplications and deletions contribute to human genetic variation and diversity is unknown. Here, we show that large-scale copy number polymorphisms (CNPs) (about 100 kilobases and greater) contribute substantially to genomic variation between normal humans. Representational oligonucleotide microarray analysis of 20 individuals revealed a total of 221 copy number differences representing 76 unique CNPs. On average, individuals differed by 11 CNPs, and the average length of a CNP interval was 465 kilobases. We observed copy number variation of 70 different genes within CNP intervals, including genes involved in neurological function, regulation of cell growth, regulation of metabolism, and several genes known to be associated with disease.

NWA

Acquiring mosaicism.Human development from a single fertilized cell to a multicellular organism requires many cell divisions and the genetic material to be replicated many times.

J R Lupski Science 2013;341:358-359

Published by AAAS

Mutation rate of polymorph sequences (μ)

Human Evolutionary Genetics, Jobling, 2004

Microsatellite structure

Trinucleotide repeat expansion

Passarge, 2001

Genetic diseases due to repeat expansion

Disease (Examples)	Gene	Frequency	Tri - nucleotide	Normal Number	Mutant A l lele	Chromosome
Huntington disease	HD	1:10 000	(CAG) _n	0–26	36 - 121	4p16.3
Fragile X syndrome	FMR1	1:5 000	(CGG) _n	6–50	52-500	Xq27.3
Myotonic dystrophy	DMPK	1:8 000	(CTG) _n	5-37	50-500	19q13.2
Spinal-bulbar muscular atrophy (Kennedy)	SBMA	<1:50 000	(CAG) _n	11–31	36–65	Xq11-12

С

Ь

Fragile X Huntington disease Myotonic dystrophy Friedrich ataxia SMA etc.

d

B. Fragile site Xq27.3

Expanded CGG repeats in the Fragile X syndrome

Microsatellite evolution

Principle of STR allelic ladder formation

Separate PCR products from various samples amplified with primers targeted to a particular STR locus

Polyacrylamide Gel

Find representative alleles spanning population variation

Microsatellite - STR - marker (Short Tandem Repeat)

Repeat region is variable between tested persons, while flanking region where PCR primers anneal is invariant

Homozygous = tested alleles are same

Heterozygous = tested alleles differ and can be separeted

Primer binding site determines PCR product size!

Schematic of Multiplex-PCR

(A) Three loci parallel amplification in one reaction

(B) PCR products separated based on fragment size

Figure 4.3, J.M. Butler (2005) Forensic DNA Typing, 2nd Edition © 2005 Elsevier Academic Press

Microsatellite allele frequency distributions

How Statistical Calculations are Made

- Generate data with set(s) of samples from desired population group(s)
 - Generally only 100-150 samples are needed to obtain reliable allele frequency estimates
- Determine allele frequencies at each locus
 - Count number of each allele seen
- Allele frequency information is used to estimate the rarity of a particular DNA profile
 - Homozygotes (p²), Heterozygotes (2pq)
 - Product rule used (multiply locus frequency estimates,

PM = (P1)(P2)...(Pn))

Assumptions with Hardy-Weinberg Equilibrium

The Assumption	The Reason
Large population	Lots of possible allele combinations
No natural selection	No restriction on mating so all alleles have equal chance of becoming part of next generation
No mutation	No new alleles being introduced
No immigration/emigration	No new alleles being introduced or leaving
Random mating	Any allele combination is possible

None of these assumptions are really true...

Table 20.6, J.M. Butler (2005) Forensic DNA Typing, 2nd Edition © 2005 Elsevier Academic Press

STR Cumulative Profile Frequency with Multiple Population Databases

STR Locus	Profile Computed	Number of Popula- tions Used	Cumulative Profile Frequency Range (1 in)	Cumulative Profile Frequency against U.S. Caucasians (Appendix II)
D3\$1358	16,17	166	5.24 to 62.6	9.19
VWA	17,18	166	37.6 to 1080	81.8
FGA	21,22	166	737 to 119000	1010
D851179	12,14	166	8980 to 5 430 000	16 400
D21511	28,30	166	165 000 to 248 000 000	186000
D18551	14,16	166	$3.85{\times}10^{6}$ to $2.68{\times}10^{10}$	4.88×10 ⁶
D55818	12,13	166	$2.28{\times}~10^7$ to $4.22{\times}10^{11}$	$4.51\!\times\!10^7$
D135317	11,14	166	$4.32{\times}10^8to$ $1.69{\times}10^{13}$	1.38×10 ⁹
D75820	9,9	166	$1.17{\times}10^{10}\text{to}2.98{\times}10^{16}$	4.22×10 ¹⁰
D165539	9,11	97	$4.06{\times}10^{11}$ to $1.11{\times}10^{18}$	5.82×1011
TH01	6,6	97	9.30×10^{12} to 1.45×10^{19}	1.05×10^{13}
TPOX	8,8	97	$3.33{\times}10^{13}$ to $1.54{\times}10^{20}$	3.63×10 ¹³
CSF1PO	10,10	97	$3.43{\times}10^{14}to2.65{\times}10^{21}$	7.43×10^{14}

10¹⁴ to 10²¹

D.N.A. Box 21.1, J.M. Butler (2005) Forensic DNA Typing, 2nd Edition © 2005 Elsevier Academic Press

STR System	Maternal Meioses	Paternal Meioses	Number from	Total Number of	Mutation
	(%)	(%)	either	Mutations	Rate
CSF1PO	95/304,307 (0.03)	982/643,118 (0.15)	410	1,487/947,425	0.16%
FGA	205/408,230 (0.05)	2,210/692,776 (0.32)	710	3,125/1,101,006	0.28%
TH01	31/327,172 (0.009)	41/452,382 (0.009)	28	100/779,554	0.01%
ΤΡΟΧ	18/400,061 (0.004)	54/457,420 (0.012)	28	100/857,481	0.01%
VWA	184/564,398 (0.03)	1,482/873,547 (0.17)	814	2,480/1,437,945	0.17%
D3S1358	60/405,452 (0.015)	713/558,836 (0.13)	379	1,152/964,288	0.12%
D5S818	111/451,736 (0.025)	763/655,603 (0.12)	385	1,259/1,107,339	0.11%
D7S820	59/440,562 (0.013)	745/644,743 (0.12)	285	1,089/1,085,305	0.10%
D8S1179	96/409,869 (0.02)	779/489,968 (0.16)	364	1,239/899,837	0.14%
D13S317	192/482,136 (0.04)	881/621,146 (0.14)	485	1,558/1,103,282	0.14%
D16S539	129/467,774 (0.03)	540/494,465 (0.11)	372	1,041/962,239	0.11%
D18S51	186/296,244 (0.06)	1,094/494,098 (0.22)	466	1,746/790,342	0.22%
D21S11	464/435,388 (0.11)	772/526,708 (0.15)	580	1,816/962,096	0.19%
Penta D	12/18,701 (0.06)	21/22,501 (0.09)	24	57/41,202	0.14%
Penta E	29/44,311 (0.065)	75/55,719 (0.135)	59	163/100,030	0.16%
D2S1338	15/72,830 (0.021)	157/152,310 (0.10)	90	262/225,140	0.12%
D19S433	38/70,001 (0.05)	78/103,489 (0.075)	71	187/173,490	0.11%
SE33 (ACTBP2)	0/330 (<0.30)	330/51,610 (0.64)	None reported	330/51,940	0.64%

Mutation rate of generally used STR markers: $10^{-3} - 10^{-4}$ / meiosis

Y chromosome microsatellite profile

Genetic History

DNA Marker Tested	Field Jefferson Male-Line	Eston Hemings Male-Line	John Carr Male-Line	Thomas Woodson Male-Line	
Number of individuals typed	5	1	3	5	
Y STR Loci DYS19 DYS388 DYS389A DYS389B DYS389C DYS389D DYS390 DYS391 DYS391 DYS392 DYS393 DXYS156Y	15 12 4 11 3 9 11 10 15 13 7	15 12 4 11 3 9 11 10 15 13 7	14 12 5 12 3 10 11 10 13 7	14 12 5 11 3 10 11 13 13 7	
Y SNP Loci DYS287 (YAP) SRYm8299 DYS271 (SY81) LLY22g Tat 92R7 SRYm1532	(0 = ancestral 0 0 0 0 0 0 1	state; 1 = derive 0 0 0 0 0 0 1	ed state) 0 0 0 0 0 1 1	0 0 0 0 1 1	
Minisatellite Locus MSY1	(3)–5 (1)–14 (3)–32 (4)–16	(3)–5 (1)–14 (3)–32 (4)–16	(1)-17 (3)-36 (4)-21	(1)-16 (3)-27 (4)-21	

Table 9.8, J.M. Butler (2005) Forensic DNA Typing, 2nd Edition © 2005 Elsevier Academic Press

www.yhrd.org/Search/Haplotypes;;s

HRD.ORG3.0	Search						
R39 : 101055 haplotypes	Haplotypes SNPs Populations Contributors Contributions	Analyse	Research	Contribute	Meet		
DYS19 DYS3691 16 2 13 2 DYS438 DYS439 10 13 13	DYS35911 DYS 31 25 DYS437 DYS44 15 20	390 DYS391 12 12 8 DYS456 15 12	DYS392 DY 11 2 13 DYS455 DY3 18 23	S395 DYS355 Image: 14.16 Image: 14.16 S635 YGATAH4 Image: 11 Image: 11	National databa	se Metapopulations SNP ase	Search

Please note: The database size will vary based on the loci you have entered.

- 7 loci haplotype (DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393): 101055 haplotypes
- 9 loci haplotype (+ DYS385a/b): 99258 haplotypes
- 11 loci haplotype (+ DYS438, DYS439): 72171 haplotypes
- 12 loci haplotype (+ DYS437): 52628 haplotypes
- 17 loci haplotype (+ DYS448, DYS456, DYS458, DYS635, YGATAH4): 40987 haplotypes

Y-SNPs:

- 124 Y-SNP branches (defined by 134 Y-SNP markers)
- 9039 haplotypes with Y-SNP information

YHRD by Sascha Willuweit & Lutz Roewer is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. Supported by

- All Metapopulation: Found 0 of 40987 matching haplotypes [F=0 (95% CI: 0 9 × 10⁻⁵)] in 0 of 282 populations.
 - Eurasian Metapopulation: Found 0 of 16733 matching haplotypes [#0 (95% Cl: 0 2.204 × 10⁻⁴)] in 0 of 130 populations.
 - **East Asian Metapopulation:** Found 0 of 12674 matching haplotypes [f=0 (95% Cl: 0 2.91 × 10⁻⁴)] in 0 of 64 populations.
 - Australian Aboriginal Metapopulation: Found 0 of 766 matching haplotypes [=0 (95% CI: 0 4.804 × 10-3)] in 0 of 1 populations.
 - African Metapopulation: Found 0 of 1533 matching haplotypes [=0 (95% CI: 0 2.403 × 10-3)] in 0 of 10 populations.
 - Native American Metapopulation: Found 0 of 384 matching haplotypes [f=0 (95% CI: 0 9.56 × 10⁻³)] in 0 of 9 populations.
 - Eskimo Aleut Metapopulation: Found 0 of 301 matching haplotypes [#0 (95% CI: 0 1.218 × 10⁻²)] in 0 of 2 populations.
 - *Afro-Asiatic Metapopulation: Found 0 of 1854 matching haplotypes [f=0 (95% CI: 0 1.988 × 10-3)] in 0 of 21 populations.
 - Admixed Metapopulation: Found 0 of 6742 matching haplotypes [=0 (95% CI: 0 5.47 × 10-4)] in 0 of 45 populations.

Matches grouped by Metapopulations

Matches grouped by Continents M

Matches grouped by Haplogroups

Frequency surveying estimates

African - Afro-American

Frequency estimates with given haplotype not included in the database: Mean: 3.366 × 10⁻⁴, Mode: 2.843 × 10⁻⁴ Frequency estimates with given haplotype included in the database:, Mean: 3.889 × 10⁻⁴, Mode: 3.366 × 10⁻⁴

Afro-Asiatic - Semitic

Frequency estimates with given haplotype not included in the database: Mean: 4.267 × 10⁻⁴, Mode: 4.064 × 10⁻⁴ Frequency estimates with given haplotype included in the database:, Mean: 4.47 × 10⁻⁴, Mode: 4.267 × 10⁻⁴

East Asian - Japanese

Frequency estimates with given haplotype not included in the database: Mean: 5.41 × 10⁻⁴, Mode: 4.677 × 10⁻⁴ Frequency estimates with given haplotype included in the database:, Mean: 6.143 × 10⁻⁴, Mode: 5.41 × 10⁻⁴

East Asian - Korean

Frequency estimates with given haplotype not included in the database: Mean: 1.786 × 10⁻⁴, Mode: 1.395 × 10⁻⁴ Frequency estimates with given haplotype included in the database:, Mean: 2.177 × 10⁻⁴, Mode: 1.786 × 10⁻⁴

East Asian - Sino-Tibetan - Chinese

Frequency estimates with given haplotype not included in the database: Mean: 6.028 × 10⁻⁵, Mode: 3.951 × 10⁻⁵ Frequency estimates with given haplotype included in the database:, Mean: 8.104 × 10⁻⁵, Mode: 6.028 × 10⁻⁵

Eurasian - Altaic

Frequency estimates with given haplotype not included in the database: Mean: 5.634×10⁻⁴, Mode: 4.953×10⁻⁴ Frequency estimates with given haplotype included in the database:, Mean: 6.315×10⁻⁴, Mode: 5.034×10⁻⁴

Eurasian - European - Eastern European

Frequency estimates with given haplotype not included in the database: Mean: 7.657 × 10⁻⁵, Mode: 3.381 × 10⁻⁵ Frequency estimates with given haplotype included in the database:, Mean: 1.193 × 10⁻⁴, Mode: 7.658 × 10⁻⁵

Eurasian - European - South-Eastern European

Frequency estimates with given haplotype not included in the database: Mean: 3.772 × 10⁻⁴, Mode: 2.878 × 10⁻⁴ Frequency estimates with given haplotype included in the database:, Mean: 4.667 × 10⁻⁴, Mode: 3.772 × 10⁻⁴

Eurasian - European - Western European

Frequency estimates with given haplotype not included in the database: Mean: 2.693 × 10⁻⁵, Mode: 1.444 × 10⁻⁵ Frequency estimates with given haplotype included in the database:, Mean: 3.941 × 10⁻⁵, Mode: 2.693 × 10⁻⁵

Counting Method

95% confidence interval

 $1 - (0.05)^{1/N} \approx 3/N$