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FIGURE 7.1. Genome sizes in the three domains of life. A selection of genome sizes and size
ranges from specific groups of organisms is indicated.

7.1, adapted from Bentley S.D. et al., Annu. Rev. Genet. 38: 771-791, © 2004 Annual Reviews, www.annualreviews.
org, based on data from DOGS http://www.cbs.dtu.dk/databases/DOGS/
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-a stable environment usually
leads to genome reduction
(genes not important for the
given niche will be lost over
time)

- a changing environment
leads to larger genomes, as
bacteria have to be ready for
multiple possibilities (different
circumstances need different
set of genes for adaptation)

(Dobrindt et al. (2004) Nat Rev Microb)
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Table 1 General features of the genomes of B. pertussis,
B. parapertussis and B. bronchiseptica

B. pertussis B. parapertussis B. bronchiseptica

Size (bp) 4,086,186 4,773,551 5,338,400
G+C content (%) 67.72 68.10 68.07
Coding sequences 3,816 4,404 5,007
Pseudogenes 358 (9.4%) 220 (5.0%) 18 (0.4%)
Coding density (intact genes) 82.9% 86.6% 91.4%
Coding density (all genes) 91.6% 92.2% 92.0%
Average gene size (bp) 978 987 978
rRNA operons 3 3 3
tRNA 51 53 55
1S481 238 0 0
1IS1001 0 22 0
1IS1002 6 90 0
IS1663 17 0 0

- the obligate human pathogen B. pertussis has lost 20% of its chromosome (B.
bronchiospetica can infect multiple species)

- 10% of the remaining genes are pseudogenes
- a major force for gene inactivation is the expansion of an IS element

(Parkhill et al. (2003) Nat Gen)



- Hemiptera feed on plant fluids, therefore they are
missing 10 of the essential AAs from their diet - these are
produced by obligate symbionts

- Sulcia sp. are the most important symbionts, but they
produce only 8 of these missing AAs in some cicadas
-Sulcia have a reduced genome themselves — e.g. the
symbiont of Macrosteles quadrilineatus has a 190 kb
genome, with 190 protein coding genes, without DNA
repair, oxidative phosphorylation, and even some

- Another symbiont of M. quadrilineatus, Nasuia
deltocephalinicola has the smallest known
genome

- This produce the two AAs not made by Sulcia:
Met, His — there is barely any other metabolic
pathway intact

- 112 Kb genome, 137 protein coding genes,
alternative genetic code(UAS: STOP -> Trp)

(Bennett and Moran (2013) Genome Biol Evol )



Complementary genome reduction in symbionts
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- Hodgkinia genomes from the cicada Tettigades undata can be assembled only on two
chromosomes

- These genomes have complementary AA-synthesis pathways
- Only genome-based staining can distinguish them, their rRNA is almost identical
(Van Leuven et al. 2014 Cell, Campbell et al. 2014 PNAS)



A: in some symbionts (pl. Sulcia) inactivating mutations appear (2) and become widespread
through genetic drift (4), but finally natural selection discards them

B: in the case of Hodgkinia complementary inactivating mutations appear, which can spread
through the population, but if the original genome gets lost, these reduced genome symbionts
will be dependent on each other

(Van Leuven et al. 2014 Cell, Campbell et al. 2014 PNAS)
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In Magicicada tredicim (MAGTRE) more than a dozen (min. 17) circular, complementary
Hodgkinia “scaffolds” can be assembled. Some of these are almost certainly in different

Hodgkinia cells.

(Campbell et al. 2014 PNAS)



In Magicicada tredicim the new genotypes segregated into further genotypes. Because of the
complicated dependency network (the cicada and all the Hodgkinia lines are dependent on

each other for survival), if a single Hodgkinia line gets lost, the whole ecosystem colapses.

(Campbell et al. 2014 PNAS)



- The genome of the soil species
Streptomyces coelicolor is 8.7
Mb and codes for ~7800
proteins

- the essential genes are in the
middle of the linear chromosome
- the non-essential “standby”
genes are on the arms

(Bentley et al. (2002) Nature)



Lagging strand

TRENDS in Microbiology

(Abby and Daubin (2007) TiM)



A. Operon on leading strand

- a replication fork on the “leading strand” will disrupt the transcription in the
operon, but that can restart as soon as the fork passes through the
transcriptional origin

- in the case of the “lagging strand” because of the opposite orientation this will
take much longer, which could be important for highly transcribed genes

(Price at al. (2005) Nucleic Acids Res)
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(Shimizu et al. (2002) PNAS)

-“GC skew” describes the
relative excess of: (C-
G)/(C+G).

- because in the bacterial
genomes replication prefers G
in the leading strand, GC-skew
can reveal the replication origin
and terminus in the genome

- the Clostridium genome is an
extreme example of this
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. ) (McCutcheon et al. (2009) PLoS Genet)
Two potential explanations:

- energetic reasons: the synthesis of GTP and CTP requires more energy, and
the parasites with small genomes are optimizing for this as well

- mutation-related reasons: prokaryotes with small genomes often lost their DNA
repair enzymes, and the most common mutation is the C -> T transition
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Eschrichia coli K12

-4.6 Mb

- 4288 protein coding
genes (we still do not
understand the function
of 1/3 of these)

(Blattner et al. (1997) Science)
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- after sequencing multiple E. coli genomes it became obvious that the really
essential genes are only a fraction of those found in K12

- recent estimates put the size of the E. coli core genome to <1900 genes,

whereas the pan genome (all the genes that have been found in any E. coli
isolate) is over 17 000.

(Touchon et al. (2009) PLoS Genet)
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(Andersson et al. (1998) Nature)

- obligate, intracellular
parasite that causes typhus

- a big part of the genome
(24%) contains non coding
sequences

- these are pseudogenes
that gradually acquire more
and more mutations

- Rickettisa is part of the a-
proteobacteria, just like the
ancestor of the
mictochondrium, therefore
its genomic degradation can
be informative to understand
the evolution of the
mitochondrial genome.



Nature Reviews | Genetics

(Timmis et al. (2004) Nat Rev Gen)



Proteobacterdum-like
endosymbiolic ancestor

endosymbiotic ancestor

Nature Reviews | Genetics

(Timmis et al. (2004) Nat Rev Gen)



ND5

Human
Q Mitochondrial DNA
(16,569 bp)

Light Strand ND4

con ATPase

Heavy Strand

Double stranded, circular
DNA, coding on both strands

In humans it is 16,569 bp long

Encodes for 37 genes
13 of these genes are
involved in OxPhos, the rest
are tRNAs and rRNAs

There are multiple copies in
every mitochondrial matrix



Marchantia
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(Alberts et al.: Molecular Biology of the Cell)

O Acanthamoeba
= Plasmodium

== Chlamydomonas

- the size of the
mitochondrial genome can
be as small as 6000 bp
(Plasmodium falciparum) or
as big as 300,000 bp (some
plants)

- most are circular, but some
are linear

- in animals (Eumetazoa)
MtDNA size is relatively
stable, around 16,500 bp

- the Rickettsia genome,
used as reference is 1.1
million bps long



- less complex
mitochondrial genomes
contain subsets of
genes from more
complicated mt-
genomes.

- five genes are present
in all mMtDNASs:: cob,
cox1, cox3, rns, rnl

- what happened with
the other genes...?
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(Alberts et al.: Molecular Biology of the Cell)
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Bigelowiella natans
alpha subunit guanine nucleotide binding protein gene 1

S — A — — — — — — — — — —

Intron 1 = 74 bp
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Current Biology

- the first intron of a gene in a unicellular algae is 86% identical to the
sequence of the cox? mitochondrial gene

- the splice acceptor and donor nucleotides evolved only later — supposedly
at the beginning this sequence had suboptimal splicing

(Curtis and Archibald (2010) Curr Biol)
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- only in the human genome there are 27 specific NUMTs — these arose
and got fixed during the past 4-6 million years
- most of them integrated into introns

(Ricchetti et al. (2004) PLoS Biol)



MITOCHONDRIAL CODES

CODON “UNIVERSAL" CODE MAMMALS INVERTEBRATES YEASTS PLANTS
UGA STOP Tp Tp Tp STOP
AUA lle Met Met ‘Met lle

CUA Leu Leu Leu Thr Leu

AGA °

AGG } Arg stop Ser Arg Arg

*Italics and color shading indicawe that the code differs from the "Universal” code.

- in plants and Reclinomonas species with large mtDNA genomes the
mtDNA code is “universal”

- the STOP -> Trp change can also be observed in some symbiotic/parasitic
bacteria

- due to the low number of coding sequences the mitochondrial genome
could be more tolerant for changing some rare codons

(Alberts et al.: Molecular Biology of the Cell)



DnaE (335) RpoB (711) RpoC (131)
n | | I UAA, stop UGA, stop
Hodgkinia SDFTL.AKAHN VAFMC.NGFNY PVVHA.FHGSA UAG, stop UGG, Trp
Mloti ADFIKWAKAQG VAFMPWNGYNY PVAHIWFLKSL tRNAT®
Ccres SDFIKWGKAHG VAFMPWNGYNF PVAHIWFLKSL
Pdeni ADFIKWAKEHN VAFMPWNGYNY PVAHIWFLKSL
Rrubr ADFIQWAKDAD VAFMPWNGYNF PVAHIWFMKSL
Elito ADFIQWAKDHG VAFMPWNGYNY PVAHIWFLKSL
Pubiq SDYIKWAKNND VAFMPWQGYNF PVAHIWFLKSL :
Rrick SDFIKWSKKEG VAFLPWNGYNF PVAHIWFLKSL . b
Ecoli MEFIQWSKDNG VAFMPWNGYNF PTAHIWFLKSL UAG | UGA (
Nmeni QDFINWAKTHG IAFMPWNGYNY PVAHIWFLKSL :
Gmeta ADFINWAKDHG VAFMPWGGYNF PVAHIWFLKSL
tRNA-Trp release UGA
anticodon factors encodes
RF1 ‘
. “a. T P
initial state CCA RE2. || STO |
@ mutation of tRNA-Trp gene
RF1 STOP
f UGA *
some readthrough o CCA RF2  Trp
@ loss of Release Factor 2 (RF2)

only UAA and UAG read as stop *CCA RF1 Trp

@ mutation of tRNA-Trp anticodon

UGA, UGG both read by wobble rules UCA RF1 Trp

@ genomic codon adaptation

(McCutcheon et al. (2009)
new UAA and UAG stops generated; PLoS Genet)

some UGG codons changed to UGA

UCA RF1 Trp
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- Double stranded, circular DNA, coding on both strands

- genes regulating transcription are almost identical with their bacterial

homologs



Plastid
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% No gene expression
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- a genetic screen to test for DNA transfer from the chloroplast to the nucleus:
- the gene encoding for spectinomycin resistence (aadA) is behind a bacterial
promoter (therefore it is active in the chloroplast), whereas the gene for
neomycin resistence (neo) is behind a eukaryotic promoter so it is active only
in the nucleus
- in somatic cells (e.g. leaf) the chance of the transfer was 1 : 5 million,
whereas in pollen cells 1 : 16 000 (the difference could be due to the fact that
during pollen formation the chloroplast breaks down and there is a higher

chance for its DNA to get to the nucleus)
(Maliga (2003) Nature)
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- in self-pollinating systems it can be observed that frequent integrations are
counteracted with frequent deletions

- sometimes integrations can get lost within a single generation (the mechanism

for this is unknown) (Sheppard and Timmins (2009) PLoS Gen)
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- the frequency of chloroplast-
sequence reactivation in the
genome is comparable to the
frequency of the nuclear transfer

- the activation of nuclear
chloroplast sequences happens
with the capture of upstream
promoters
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(Bock et al. (2008) Bioessays)
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(Timmis et al. (2004) Nat Rev Gen)



Why isn’t the translocation of mitochondrial and
chloroplast genomes to the nucleus complete?

1.  Smaller organellar genomes will use alternative codon tables,
therefore newly transferred genes will be non-functional in the nucleus.

2. Genes encoded by the organellar genome are highly hydrophobic,
therefore are hard to transfer through the cytoplasm.

3. CORR (COlocation of genes and gene-products for Redox Regulation
of gene expression) hypothesis: the transcription of some genes is
regulated by the redox potential of bioenergetic membranes. These
can not be transferred from the organelle, as their regulation is not
possible in the nucleus.

(Allen (2003) Phil Trans R Soc Lond B)



The complex genome of the eukaryotes was made
possible by the emergence of the mitochondrium
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Origin of

rep?alion

Circovirus
(PCV-1) 1.7Kb

@ 2008
Swiss Institute of Bioinformatics

@ ViralZone 2008
Swiss Institute of Bioinformatics

T=1
-<2 kb, circular ssDNA genome, encoding only for two proteins

- Viral life cycle:

1. Virus penetrates into the host cell.
2. Uncoating, and release of the viral genomic ssDNA into the nucleus.
3. The ssDNA is converted into dsDNA with the participation of cellular factors.
4. viral mMRNAs are transcribed and translated to produce viral proteins.
5. Replication may be mediated by a “Rep-like” protein, and would occur by rolling circle
6. These newly synthesized ssDNA can either
a) be converted to dsDNA and serve as a template for transcription/replication
b) be encapsidated by capsid protein and form virions released from the cell by budding
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-~730 kb dsDNA genome, ~550 genes, some involved in translation, others in

DNA repair

Functional Categories

. DNA replication, recombination and repair
@ transcription

@ transiation

. signal transduction mechanism

. cell envelope biogenesis, outer membrane
D defense mechanisms

protein modification, chaperones

. virus structure

D carbohydrate transport and metabolism
D amino acid transport and metabolism

D nucleotide transport and metabolism

- coenzyme metabolism

D general function prediction

D function unknown

Gene Expression

[ rirst expressed 0-3 hpi.

. first expressed 6 hpl or later
. cross-hybridization with host
D expression status unclear
. no expression observed

microarray data not available

Promoter Type

early motif (AAAAATTGA)
@ 12t motif (TCTA)

D both early and late motifs
@ no motif found

Repeats

@ FriP-iike repeats
. tRNA genes

- 5% of the genome is repetitive DNA and a huge chunk of the genome is of

bacterial origin

(Fischer et al. (2010) PNAS)
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* 90% coding capacity
* 10% Junk DNA
* 1.2 million base pairs
* ~911 protein coding genes
* additional genes (inc. aminoactyl IRNA synthek
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Mimivirus
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transcription, DNA repair

- the genomic boundary between viruses and real cellular organisms is opaque
(or non existent): these viruses are larger than some prokaryotic viruses and
encode a complex replication machinery

(Raoult et al. (2004) Science)



2,473,870 nt
2556 CDSs
3 tRNAs

- the virus of Acanthamoeba castellani, discovered in Chile.

- forms 1um long, 0.5um wide particles
-~2.5-2.8 Mb dsDNA genome, 2556 hypothetical protein coding genes

- BUT: most of these (93%) have no homologs in other organisms (unusual even
in viruses), thus it is possible that their translation is unusual

(Philippe et al. (2013) Science)
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(Neumann et al. (2009) Nature)



Classical swine  North American
avian

Human (H3N2)

Influenza A (H1N1)

like swine

PB2 - North American
avian

PB1 - Human H3N2
PA - North American
avian

H1 - Classical swine
NP - Classical swine
N1 - Eurasian avian-
like swine

M - Eurasian avian-like
swine

NS - Classical swine

Eurasian avian-

(Neumann et al. (2009) Nature)



Macropinosome
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f Fulllength GPtrimer o mRNA o NP oL
® 19kDa GP trimer @ VPio o VP24 o VP35
oo sGP == RNA+NP o VP30

Nature Reviews | Microbiology

(White and Schonberg, 2012)

UAAULCUUUUU-GAUUUUUAG-CUUCUUAUAAUL CUUCUUGUAAUU! ..
Te stop NP IR Te start VP35 Te start VP24 UAAULCUUUUU
Overlap Tc stop VP30

- (-) stranded RNA-genome

- Encodes 7 genes

- VP35, VP30, VP24 have a role in the
suppression of the immune (IFN, RNAI)

- VP40 — matrix protein

- L - polymerase

- NP — nucleoprotein

- GP - glycoprotein
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(Misasi and Sullivan (2014), Cell)
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