BIOINFORMATICS

Data sources in molecular bioinformatics

David Fazekas fazekas@netbiol.elte.hu

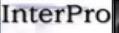
Department of Genetics (ELTE, HU)

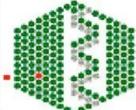
Earlham Institute (UK)

ABOUT DATA SOURCES

Types of databases

- Primary databases
 - Nucleotide sequence data (DNA, RNA)
 - 3d structure data
 - Annotations
- Secondary, derived databases
 - Protein sequence data (translated from coding DNA)
 - Regulation data (TFBS motif)
- Tertiary, interaction databases
 - Relations between entities in primary and secondary databases
 - Regulation, metabolic, signalisation, binding interaction
- Other, non-sequence, non-annotations databases
 - Evolutionary, literature





National Institutes of Health

DATA SOURCES IN LITERATURE

Database journal

Nucleic Acids Research -Database Issue

Published online 30 November 2012

Nucleic Acids Research, 2013, Vol. 41, Database issue D1-D7 doi:10.1093/nar/gks1297

The 2013 *Nucleic Acids Research* Database Issue and the online Molecular Biology Database Collection

Xosé M. Fernández-Suárez^{1,*} and Michael Y. Galperin^{2,*}

¹Cambridge, CB24 6DZ, UK and ²National Center for Biotechnology Information (NCBI), National Library of Medicine, National Institutes of Health (NIH), Bethesda, MD 20894, USA

Received November 14, 2012; Accepted November 15, 2012

ABSTRACT

The 20th annual Database Issue of *Nucleic Acids Research* includes 176 articles, half of which describe new online molecular biology databases

NEW AND UPDATED DATABASES

This 1300-page virtual volume represents the 20th annual Database Issue of *Nucleic Acids Research* (*NAR*). It includes descriptions of 88 new online databases, 77 update articles on databases that have been previously

Bioinformatics organisations

- Europe
 - EMBL EBI
 - O European Molecular Biology Laboratory European Bioinformatics Institute
 - SIB
 - Swiss Institute of Bioinformatics
- USA
 - NIH NCBI
 - O National Institutes of Health National Center for Biotechnology Information
 - UCSC
 - O University of California, Santa Cruz
- Japan
 - DDBI
 - DNA Data Bank of Japan

Data exchange and synchronization between data warehouse

• INSDC

 International Nucleotide Sequence Database Collaboration

Data type	DDBJ	EMBL-EBI	NCBI
Next generation reads	Sequence Read Archive		Sequence Read Archive
Capillary reads	Trace Archive	European Nucleotide	Trace Archive
Annotated sequences	DDBJ	Archive (ENA)	<u>GenBank</u>
Samples	<u>BioSample</u>	,	<u>BioSample</u>
Studies	BioProject		BioProject

What kind of information is stored in data sources about a gene or protein

- Sequence
- Genome information
 - Coordinates, chromosome, intrones, UTR region, promoter
- Structural information
 - 3D structure, motifs, domains
- Expression
 - Tissue, phenotype, disease,
- Evolutionary information
 - Taxon, homologues
- Functional information
 - Family, pathway, GO

Identifier ID

- Name is NOT specific
 - SMAD2: hMAD-2, JV18-1, MADR2, MADH2, SMAD family member 2, Mad-related protein 2, Mothers against decapentaplegic homolog 2, MAD homolog 2, Mothers against DPP homolog 2, Receptor-regulated SMAD, R-SMAD
- ID indicates an entity in the database
 - SMAD2: Q15796, ENSG00000175387, 4087
- Translate between DBs
 - Mapping

DATABASES IN GENERAL

What is a database?

- Same quality of data
- Structured data
- Stored on computer
- Searchable
- Sortable
- Editable

What is a data source?

- Online accessible
- Free (Open data)
- Community used
- Committee drived

Data storing and seaching

Information system

NCBI Entrez, Google, EBI

Search engine

Blast, SQL, web service

Storing system

Database system

Data

Sequence, flat file, table, text

SCIENTIFIC LITERATURE

Papers

- Scientific vs medical literature
- Types of articles
 - Paper, letter, review
- Journals
- Peer review
- Cost
- Alternative publication processes:
 - Plos
 - F1000

A WEEKLY ILLUSTRATED JOURNAL OF SCIENCE

"To the solid ground Of Nature trusts the mind which builds for aye."-WORDSWORTH

THURSDAY, NOVEMBER 4, 1869

NATURE: APHORISMS BY GOETHE

NATURE! We are surrounded and embraced by her: powerless to separate ourselves from her, and powerless to penetrate beyond her. Without asking, or warning, she snatches us up into

her circling dance, and whirls us on until we are tired, and drop from her arms.

She is ever shaping new forms: what is, has never yet been; what has been, comes not again. Everything is new, and yet nought but the old.

We live in her midst and know her not. She is incessantly speaking to us, but betrays not her secret. causes an endless succession of new capacities for We constantly act upon her, and yet have no power

The one thing she seems to aim at is Individuality; yet she cares nothing for individuals. She is always building up and destroying; but her workshop is

Her life is in her children; but where is the mother? material into utter opposites; arriving, without a trace of effort, at perfection, at the most exact precision, though always veiled under a certain softness.

Each of her works has an essence of its own; each of her phenomena a special characterisation: and yet their diversity is in unity.

She performs a play; we know not whether she sees it herself, and yet she acts for us, the lookers-on.

Incessant life, development, and movement are inconceivable to her, and she has laid her curse trivance to get plenty of life. upon rest. She is firm. Her steps are measured, her exceptions rare, her laws unchangeable.

not as a man, but as Nature. She broods over an until he attempts to soar above it.

all-comprehending idea, which no searching can

Mankind dwell in her and she in them. With all men she plays a game for love, and rejoices the more they win. With many, her moves are so hidden, that the game is over before they know it.

That which is most unnatural is still Nature; the stupidest philistinism has a touch of her genius. Whoso cannot see her everywhere, sees her nowhere rightly.

She loves herself, and her innumerable eyes and affections are fixed upon herself. She has divided herself that she may be her own delight. She enjoyment to spring up, that her insatiable sympathy may be assuaged.

She rejoices in illusion. Whoso destroys it in himself and others, him she punishes with the sternest tyranny. Whoso follows her in faith, him she takes as a child to her bosom.

Her children are numberless. To none is she She is the only artist; working-up the most uniform altogether miserly; but she has her favourites, on whom she squanders much, and for whom she makes great sacrifices. Over greatness she spreads her

> She tosses her creatures out of nothingness, and tells them not whence they came, nor whither they go. It is their business to run, she knows the road. Her mechanism has few springs-but they never wear out, are always active and manifold.

The spectacle of Nature is always new, for she is in her, but she advances not. She changes for ever always renewing the spectators. Life is her most and ever, and rests not a moment. Ouietude is exquisite invention; and death is her expert con-

She wraps man in darkness, and makes him for ever long for light. She creates him dependent upon the She has always thought and always thinks; though earth, dull and heavy; and yet is always shaking him

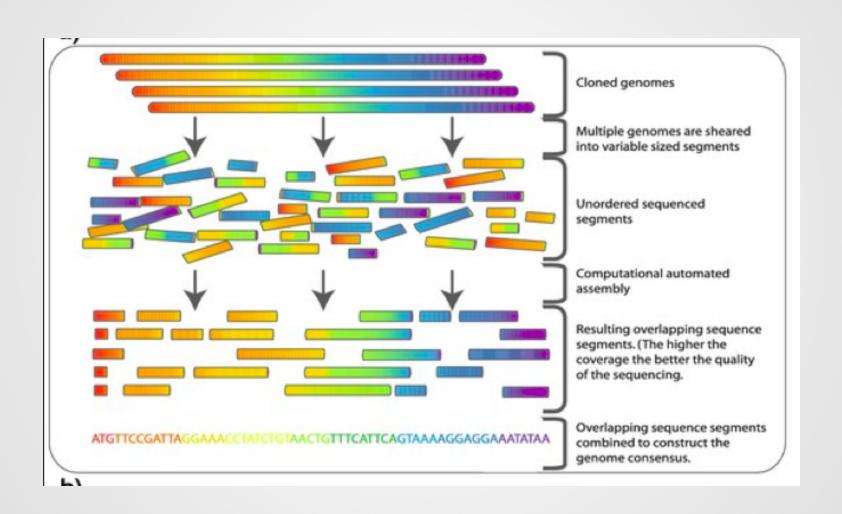
Bibliometrics

- Number of citation:
 - Slow to medure
- Impact factor:
 - Eugene Garfield
 - Dividing the number of current year citations to the source items published
 - Two year period
 - IF of journal
 - Cumulative IF
- H-index:
 - Jorge Hirsch
 - Number of paper with number of citation
 - H-index of scientist

Data sources

- Pubmed/MEDLINE:
 - **24,000,000** article
 - Abstract
- Google scholar:
 - Search engine
- Scopus
- Web of science
- Identifiers:
 - PMID
 - DOI
 - (ISBN)

DNA, RNA DATA SOURCES



Sequencing

- Basic Methods:
 - Maxam-Gilbert sequencing
 - Chain-termination methods Sanger sequencing
- The Sanger sequencing is scalable
- Automated methods
- Next Generation Sequencing NGS
- Single molecule sequencing

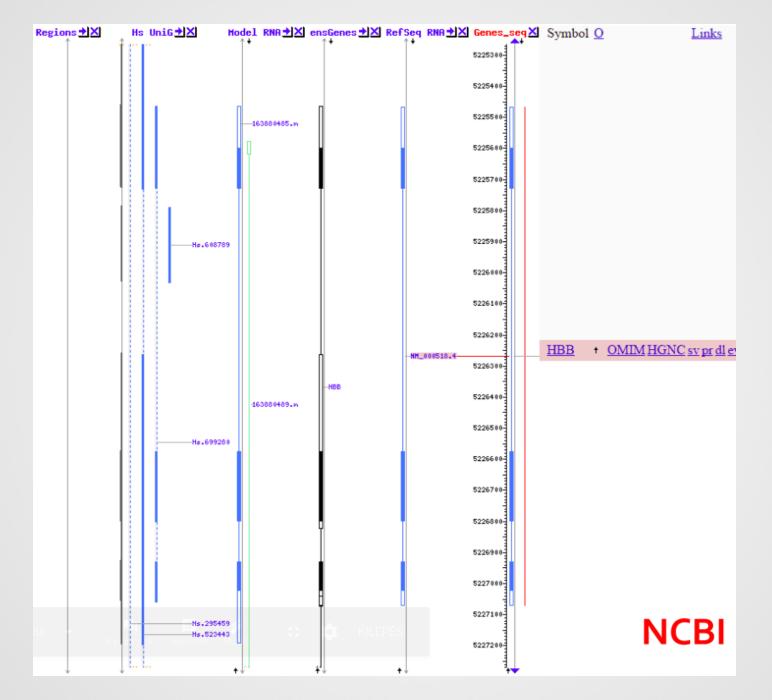
THE SANGER'S METHOD

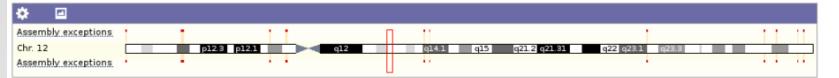
DNA sequencing: Assembly

DNA sequencing: Assembly

chr1 249250621	chr6 <u>ssto</u> hap7 4928567	chr9_gl000199_random 169874	<u>chrUn_g</u> 1000234 40531
chr2 243199373	chr6 <u>mcf</u> hap5 4833398	chrUn_g1000211 166566	chr11_gl000202_random 40103
chr3 198022430	chr6_cox_hap2 4795371	chrUn_g1000213 164239	chrUn_g1000238 39939
chr4 191154276	chr6 <u>mann</u> hap4 4683263	chrUn_g1000220 161802	chrUn_g1000244 39929
chr5 180915260	chr6 <u>apd</u> hap1 4622290	chrUn_g1000218 161147	chrUn_g1000248 39786
chr6 171115067	chr6 <u>qbl</u> hap6 4611984	chr19_gl000209_random 159169	chr8_gl000196_random 38914
chr7 159138663	chr6 <u>dbb</u> hap3 4610396	chrUn_g1000221 155397	chrUn_g1000249 38502
chrX 155270560	chr17_ctg5_hap1 1680828	chrUn_g1000214 137718	chrUn_g1000246 38154
chr8 146364022	chr4_ctg9_hap1 590426	chrUn_g1000228 129120	chr17_g1000203_random 37498
chr9 141213431	chr1_gl000192_random 547496	chrUn_g1000227 128374	chr8_gl000197_random 37175
chr10 135534747	chrUn_g1000225 211173	chr1_gl000191_random 106433	chrUn_g1000245 36651
chr11 135006516	chr4_gl000194_random 191469	chr19_g1000208_random 92689	chrUn_g1000247 36422
chr12 133851895	chr4_gl000193_random 189789	chr9_g1000198_random 90085	chr9_gl000201_random 36148
chr13 115169878	chr9_g1000200_random 187035	chr17_g1000204_random 81310	chrUn_g1000235 34474
chr14 107349540	chrUn_g1000222 186861	chrUn_g1000233 45941	chrUn_g1000239 33824
chr15 102531392	chrUn_g1000212 186858	chrUn_g1000237 45867	chr21_g1000210_random 27682
chr16 90354753	chr7_gl000195_random 182896	chrUn_g1000230 43691	chrUn_g1000231 27386
chr17 81195210	chrUn_g1000223 180455	chrUn_g1000242 43523	chrUn_g1000229 19913
chr18 78077248	chrUn_g1000224 179693	chrUn_g1000243 43341	chrM 16571
chr20 63025520	chrUn_g1000219 179198	chrUn_g1000241 42152	chrUn_g1000226 15008
chrY 59373566	chr17_g1000205_random 174588	chrUn_g1000236 41934	chr18_g1000207_random 4262
chr19 59128983	<u>chrUn_g</u> 1000215 172545	chrUn_g1000240 41933	
chr22 51304566	chrUn_g1000216 172294	chr17_g1000206_random 41001	
chr21 48129895	chrUn_g1000217 172149	chrUn_g1000232 40652	

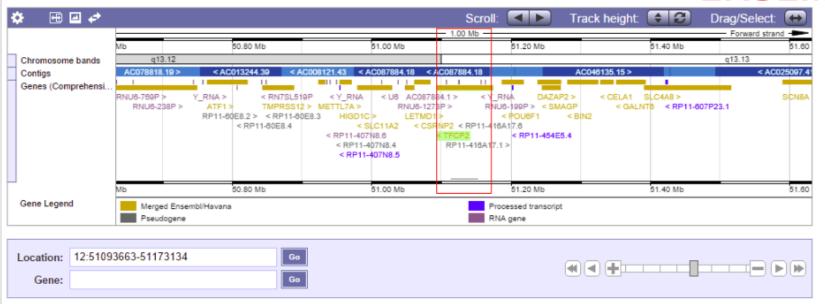
Reference genome

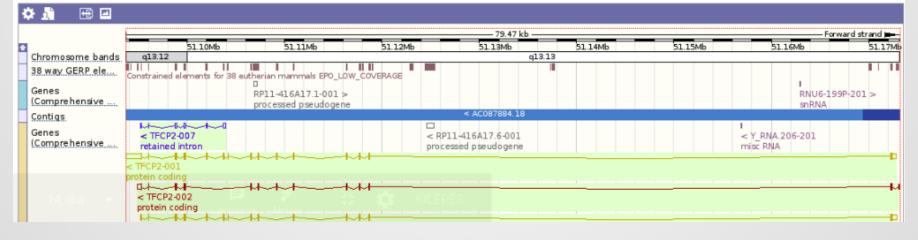

- Genome Reference Consortium
- Sequence from multiple donors
- High coverage
- Human reference genome: GRCh38 (hg38.p11)
 - **2**013
 - 13 donor

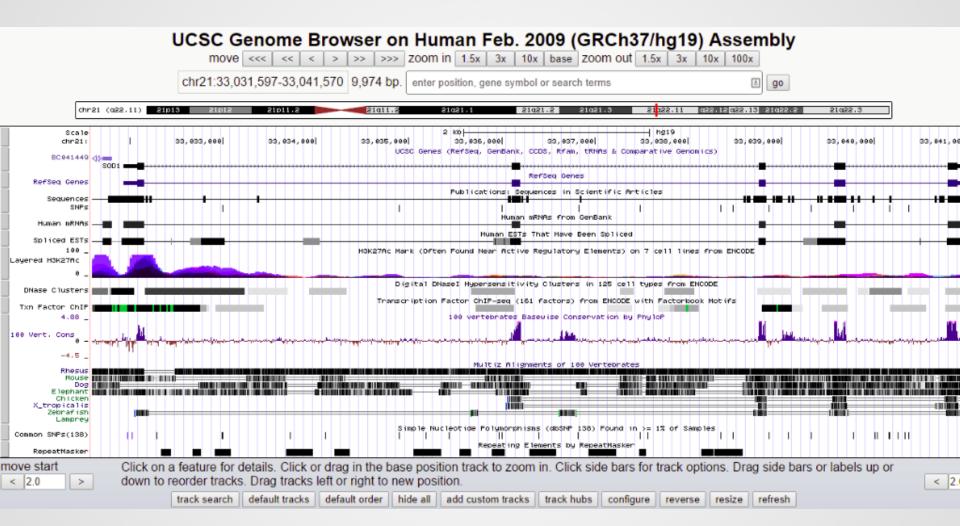

DNA sequence data sources

- Raw sequence:
 - Short reads
 - Redundant regions
 - Huge data
- Assembled genome:
 - Chromosome sequence
 - De novo or reference aligned
- Annotated genome:
 - ORFs
 - Gene names

Genome browsers


- 2d ruler-like visualisation of the genome
- 2 dimensional representation (chromosome, position)
- Many layer of data
 - Genes
 - Intrones
 - TFBS
 - Expression
 - Own dataset




Region in detail 0

ENSEMBL

USCS

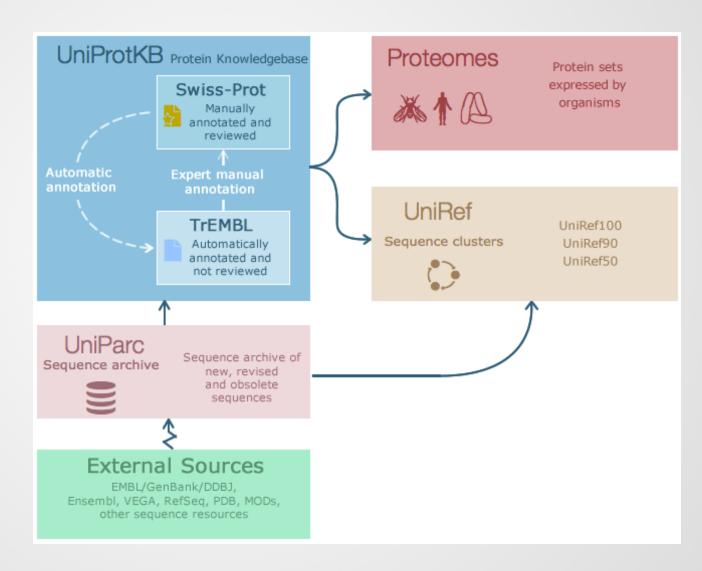
PROTEIN DATA SOURCES

UNIPROT

- Merged of 3 db:
 - SwissProt SIB+EBI 1986
 - TrEMBL Translated EMBL
 - PIR Protein Identification Resource (USA)
- Two part:
 - Reviewed (SwissProt) Manually annotated
 - Unreviewed (TrEMBL) Predicted

UniProt

UniProtKB:

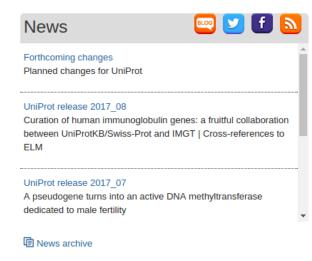

-Protein sequence and annotations

UniRef:

-UniProt Nonredundant Reference

UniParc:

-UniProt Archive


UniProt

The mission of UniProt is to provide the scientific community with a comprehensive, high-quality and freely accessible resource of protein sequence and functional information.

Getting started

UniProt data

Download latest release

Q Text search

Our basic text search allows you to search all the resources available

Get the UniProt data

A Taste Of Light

Protein spotlight

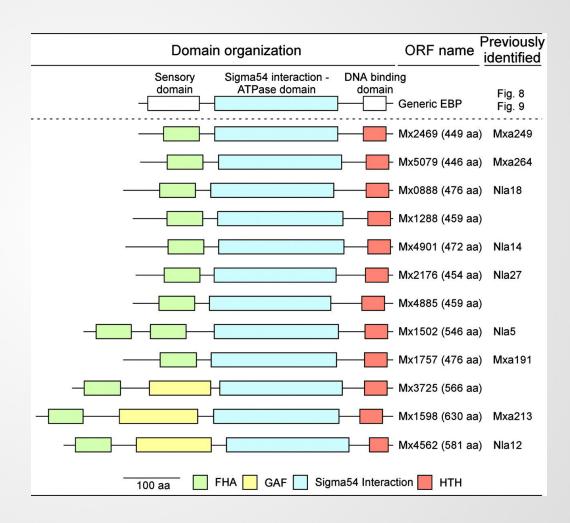
August 2017

Light gave life a chance to be. Without it, our planet would not be

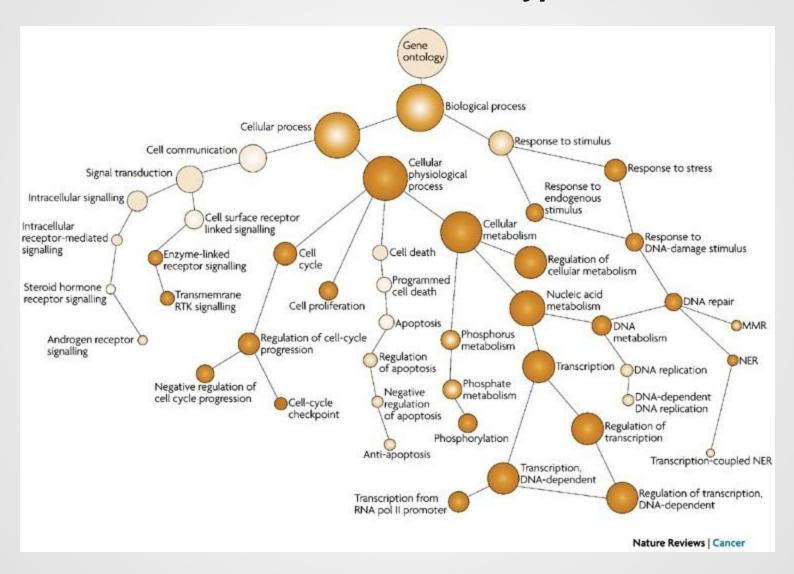
PDB - Protein Data Bank

- 3d structures of molecules
- ~1300 protein stucture

Exp.Method	Proteins	Nucleic Acids	Protein/NA Complexes	Other	Total
X-RAY	111975	1878	5724	4	119581
NMR	10493	1223	245	8	11969
ELECTRON MICROSCOPY	1242	30	436	0	1708
HYBRID	103	3	2	1	109
other	199	4	6	13	222
Total	124012	3138	6413	26	133589


	1myf.p	lb		
1	HEADER	OXYGEN TRANSPORT	02-DEC-94 1MYF	
2	TITLE	SOLUTION STRUCTURE OF CARBONMONOXY MYOG	LOBIN DETERMINED	
3	TITLE	2 FROM NMR DISTANCE AND CHEMICAL SHIFT C	DNSTRAINTS	
4	COMPND	MOL_ID: 1;		
5	COMPND	2 MOLECULE: MYOGLOBIN;		
6	COMPND	3 CHAIN: A;		
7	COMPND	4 ENGINEERED: YES		
8	SOURCE	MOL_ID: 1;		
9	SOURCE	<pre>2 ORGANISM_SCIENTIFIC: PHYSETER CATODON;</pre>		
10	SOURCE	3 ORGANISM_COMMON: SPERM WHALE;		
11	SOURCE	4 ORGANISM_TAXID: 9755		
12	KEYWDS	OXYGEN TRANSPORT		
13	EXPDTA	SOLUTION NMR		
14	NUMMDL	12		
15	AUTHOR	K.OSAPAY,Y.THERIAULT,P.E.WRIGHT,D.A.CAS	E	
16	REVDAT	3 24-FEB-09 1MYF 1 VERSN		
395	ATOM	1 N VAL A 1 17.971 1.555	4.886 1.00 0.00 N	
396	ATOM	2 CA VAL A 1 18.095 0.964	3.567 1.00 0.00 C	
397	ATOM	3 C VAL A 1 17.877 -0.547	3.689 1.00 0.00 C	
398	ATOM	4 0 VAL A 1 17.776 -1.068	4.804 1.00 0.00 0	
399	ATOM	5 CB VAL A 1 19.460 1.314	2.941 1.00 0.00 C	
400	ATOM	6 CG1 VAL A 1 19.577 2.826	2.705 1.00 0.00 C	
401	ATOM	7 CG2 VAL A 1 20.644 0.834	3.793 1.00 0.00 C	
402	ATOM	8 H1 VAL A 1 17.045 1.368	5.255 1.00 0.00 H	
403	ATOM	9 H2 VAL A 1 18.668 1.154	5.503 1.00 0.00 H	
404	MOTA	10 H3 VAL A 1 18.113 2.557	4.822 1.00 0.00 H	
405	ATOM	11 HA VAL A 1 17.306 1.372	2.937 1.00 0.00 H	
406	ATOM	12 HB VAL A 1 19.528 0.828	1.966 1.00 0.00 H	
407	ATOM	13 HG11 VAL A 1 18.750 3.167	2.082 1.00 0.00 H	
408	ATOM		3.653 1.00 0.00 H	
409	ATOM		2.194 1.00 0.00 H	
410	ATOM		3.926 1.00 0.00 H	
411	ATOM		3.292 1.00 0.00 H	
412	ATOM		4.771 1.00 0.00 H	
413	ATOM		2.554 1.00 0.00 N	
414	ATOM		2.523 1.00 0.00 C	
415	ATOM	21 C LEU A 2 18.906 -3.274	1.842 1.00 0.00 C	
	1.7011	00 0 150 0 0 000 0 700	700 1 00 0 00	

OTHER DATA SOURCES



Below the protein

- Domain, families:
 - Pfam
 - InterPro
 - PROSITE
- Motif
 - ELM
 - Phosphosite

GO - Gene Ontology

Expression Datasources

- NCBI, GEO Gene Expression Omnibus
 - http://www.ncbi.nlm.nih.gov/geo/
- EBI, ArrayExpress
 - https://www.ebi.ac.uk/arrayexpress/
- Microarray, RNAseq
- Sample, experiment base storing
- Pure annotations

Taxonomic and evolutionary data

NCBI Taxonomy

- http://www.ncbi.nlm.nih.gov/taxonomy
- Contains below species units
 - Stain, serovar
- Each taxon has own ID
 - Homo sapiens 9606

Tree Of Life

- http://tolweb.org/tree/
- Merged evolutionary tree
- Annotated species
- Encyclopedia of Life (EOL)
 - http://www.eol.org/

PRACTICE

- UniProt
- RefSeq
- NCBI
- OMIM
- HomoloGene