BIOINFORMATICS

Network Biology & Systems Biology

David Fazekas fazekas@netbiol.elte.hu Department of Genetics (ELTE, HU)

Earlham Institute (UK)

NETWORK BIOLOGY & SYSTEMS BIOLOGY SESSION

Lecture 1: Networks in biology Practice 1: Cytoscape tutorial

Lecture 2: Analyze molecular interaction network Practice 2: Analyze and integrate data with Cytoscape

Lecture 2: Dynamics of molecular interaction networks Practice 2: Network dynamic in Cytoscape

GRAPH THEORY

The bridges of Königsberg

Graph theory

- The bridges of Königsberg Euler 1735
- Graph
 - Definition: graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense "related"
- Graph types:
 - By edge:
 - directed, undirected, weighted, multi graph, ...
 - By topology:
 - Tree, circle, star, ...

Networks

• Graph

- abstract mathematical representation, data structure
- Network
 - phenomenon modelled by graph

Networks

Network	Nodes	Links	Directed / Undirected	N	L	κ
Internet	Routers	Internet connections	Undirected	192,244	609,066	6.34
WWW	Webpages	Links	Directed	325,729	1,497,134	4.60
Power Grid	Power plants, transformers	Cables	Undirected	4,941	6,594	2.67
Mobile-Phone Calls	Subscribers	Calls	Directed	36,595	91,826	2.51
Email	Email addresses	Emails	Directed	57,194	103,731	1.81
Science Collaboration	Scientists	Co-authorships	Undirected	23,133	93,437	8.08
Actor Network	Actors	Co-acting	Undirected	702,388	29,397,908	83.71
Citation Network	Papers	Citations	Directed	449,673	4,689,479	10.43
E. Coli Metabolism	Metabolites	Chemical reactions	Directed	1,039	5,802	5.58
Protein Interactions	Proteins	Binding interactions	Undirected	2,018	2,930	2.90

Degree distribution

• Degree

- The number of interaction of a given node
- In case of directed graph separately in coming and outgoing degree

• Degree distribution

• The histogram of degree of all node in a graph

Degree distribution

C.

4

Degree distribution

Nature Reviews | Genetics

NETWORK TOPOLOGY

Network types: regular network

Network types: random network (Erdős-Rényi model)

Network types: random network (Erdős-Rényi model)

Network types: scale-free network (Barabási-Albert model)

Diameter of the network

• Definition:

- The longest shortest-path :
- The longest of all the possible shortest-path among node pair in the network

Network types: small world

Regular network

uniform degrees of distribution big diameter

Small world network

uniform degrees of distribution small diameter

Network types: Bipartite

Network types: Bipartite

DISEASE GENE NETWORK

HUMAN DISEASE NETWORK

Network types: Bipartite

Node Table Edge Table Network Table

Recommended literature

- Péter Csermely: The strength of hidden networks
- Albert-László Barabási: Linked
- Albert-László Barabási: Network sience

Mi segíti a világ stabilitását?

VINCE KIADÓ

How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life

Linked

"Linked could alter the way we think about all of the networks that affect our lives." - The New York Times

Albert-László Barabási

IF I MOP SCIENCE