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Topics

● Transcriptomics
– Applications

– The microarray 
technology

– RNA-Seq and its 
analysis

– Differential 
expression analysis
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Omics



4

Transcriptomics

● Transcriptome:
– the entire repertoire of transcripts in a species 
– or cells, organs, individuals, populations, etc.
– at a specific time or under a specific set of conditions...
– represents a key link between information encoded in DNA and 

phenotype

● Types of different RNAs:
– mRNA, rRNA, tRNA
– Post-transcriptional modificators: small nuclear snRNA, small 

nucleolar snoRNA, …

– RNA regulators: micro miRNA, piwi-interacting piRNA, small 
interfering siRNA

Intro
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Transcriptomics

● Basis: the amount of mRNA indicates the level of gene 
expression and it correlates with the protein level.

● We can compare the gene expression of different cells, 
tissues, individuals, populations

● We can investigate the effects of different environments on 
gene expression

● These helps us to understand the underlying biological 
processes

Intro
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Applications

● Genetics
– Gene functions and regulation

● Genomics
– Location of genes

● Systems biology
– Co-expression networks

● Population genetics
– Differentially expressed genes between populations

● Medical science
– diagnostics

– therapeutics

● Drug design

...



7

Módszerek

● What can we measure?
– Levels of RNAs
– Levels of proteins

● How?
– Northen blot (1977)
– reverse-transcription RT-PCR (1992)
– Real-Time quantitative qRT-PCR

– high-throughput methods
● RNA Microarray or CHIP (1999)
● High throughput sequencing - RNA-Seq (2008)
● Protein-array
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Microarray
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Microarray

● It gives quantity 
information about the 
„whole” transcriptome 
using a 1×1 cm plate
– Treatment 1 vs. treatment 2

– Healthy vs. sick

– Treated vs. untreated

● Which genes have 
significantly different 
expression levels?
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Microarray
● 20-60 bp DNA oligos

● Affimetrix - 1 sample, 1 colour

● Agilent - 2 samples, 2 colours
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Microarray
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Microarray data processing

● Bioinformatics
– Background correction

● Romove the noise using negative controls 
(probes missing from the transcriptome)

– Normalization

– Aggregation
● Probes in a probe set → single expression 

value
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Differential expression analysis

● Compare two states
– i. e. treated vs. control

● Without null hypothesis
● Fold change
● t-test: P-value
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Fold change

● To measure the scale and diraction of expression 
level differences.

● 2 logFC (4x FC) is acceptable
● Here we compare means only. This is not a 

statistical test.

log2FC=log2(
mean of a probeset in Treat 1
mean of a probeset in Treat 2 )
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Hypothesis testing

● 2 sample t-test
– H0: the mean of the 2 distributions 

are the same
● → Where do the distributions come 

from?
● → replicates (more samples of each 

treatment)

– P-value: is the probability that, 
using a given statistical model, the 
statistical summary (such as the 
sample mean difference between 
two compared groups) would be 
the same as  or more extreme 
than the actual observed results.
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Microarray - summary

1. A lot of probes / chip

2. High-thoughput

3. Hypothesis-free research – but probe sets 
are pre-defined

4. Statistical testing

5. Online databases (ie. GEO, Array Express)

6. Limitations
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RNA-Seq
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Advantages of RNA-seq

● Robustness, high reproducibility
● High sensitivity
● “Direct” measurement of gene expression at the mRNA level → 

absolute(?) abundance of a transcript
● The sequences of transcribed RNAs can be reconstructed
● All transcripts – even “novel” ones – present
● Detecting transcript isoformes and splicing junctions

– → study alternative splicing - exact start - end sites

– → updating genome annotation

● Detecting polymorphisms (SNPs)
– → study allele-specific expression

● Can be used on species for which a full genome 
sequence is not available



20

Limitations of RNA-seq

● RNA-seq is more costly than microarrays
– RNA-seq: more extensive bioinformatic analysis and 

great computers are required

● Cannot detect post-transcriptional modifications
● Nor post-transcriptional regulation:

– the amount of mRNA transcribed from geneX is not 
necessarily equal to the amount of proteinX

– regulation: miRNA …

● Bias: library size, fragment length, 
GC content, hexamer priming...
– → normalization
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Work-flow of RNA-seq data analysis

0.  Extract expressed RNA, sequencing → fastq file

1.  Pre-mapping quality checking, trimming (filtering)

2.   De novo assembly of transcripts OR

  read mapping to reference genome

  Post mapping quality checking

3.  Read counting

4.  Differential Expression analyses: comparing 
expression levels

5.  Functional enrichment analysis: GO, pathways...
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De-novo transcriptome  assembly

© Alexander Platzer
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Mapping reads to reference genome

TopHat, GSNAP
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Problems

● pseudogenes (the reads were mapped to 
something that didn't express)

● identification and quantification of 
alternative transcripts

● detection of (allele specific) SNPs
● reads mapped to intronic and intergenic 

regions → how should we treat them?
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3. Read counting 

● Find reads that map to coding sequence
– count read(pairs) per gene, exon, transcript 

→ count table

● Genome annotation: GTF (GFF, SAF, ...) 
file:
– contains the location* of exons, genes, other 

transcripts
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Read counting
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Count table

                 F1  F2  F3  F4  M1  M2  M3  M4

ENSG00000127720  14  14  23  16  32  35  10  19

ENSG00000242018  24  16  11  19  21  22  13   6

ENSG00000224440   0   0   0   0   0   0   0   0

ENSG00000214453   0   0   0   0   0   0   0   0

ENSG00000237787   1   0   0   0   0   0   1   0

ENSG00000051596 220 325 450 585 475 294 224 711

...
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Complexity of transcription
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Exploring data

● How similar are the expression profiles of samples 
got the same treatment? (biological replicates)
– Corelation, MDS: Multidimensioal scaling plot
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Normalization

● It is not possible to do absolute quantification using the common 
RNA-Seq pipeline, because it only provides RNA levels relative to 
all transcripts.

● The counts need to be adjusted to be comparable across samples 
and experiments.
– Because the total coverage (sum of counts) differs accross samples

– Relaive vs. Absolute expressions
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Experimental layout

● 2 groups:
– Question: Which genes express significantly 

differently between the two groups? → p-value

– The directin of the difference → Fold change

– pairwise DE analysis

Treatment A Treatment B
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Experimental layout

● More treatment types, more groups:
– Question: Does a factor (treatment type) 

couse DE? In which genes?
● Factors: i.e obese or not; male or female ...

– We use a Generalised Linear Model (GLM) 
to calculate the p-value

– The directin of the difference → Fold change
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GLM

Sign. Factor: Gender
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GLM
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GLM

Sign. Factor: interaction of gender and obesity
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Multiple testing correction

● We calculate the same statistical test several times 
→ to all probe sets of the microarray / all genes or 
transcripts of an RNA-seq 

● If we use p=0.05 as a cutoff: we have 5% chance 
to accept something significantly differently 
expressed when the expressions were not different

● → False discovery rate (FDR) correction based on 
all p-values. ie. Bonferroni or Benjamini-Hochberg 
correction
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After the DE analysis: 
What is the function of DE genes

● Gene Ontology - GO: http://geneontology.org

http://geneontology.org/
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Enrichment analysis
● Question: Is the GO category significantly overrepresented among DE genes, 

compared to the all genes that we investigated (background genes)?
– → Finds the biological functions of the DE genes

● Hypergemetric test:
– N: Nr. of background genes (pool)
– K: Size of the intersection of background genes and genes of the GO category (DBi)

– n: Nr. of DE genes (select)
– k: Size of the intersection of DE genes and genes of the GO category

– The set of all k-combinations of a set K: K over k

P=
(Kk )(N−K

n−k )
(Nn )



43

Thanks for the attention
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