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What will we talk about?

• Introduction to probability modeling

• Character based methods 2: 

–Maximum likelihood
–Bayesian inference

•MCMC
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Steps of molecular phylogenetic analyses

1. Input data: multiple aligned sequences

2. Phylogenetic methods:

Choosing the best substitution model

Distance based method OR

Character based methods

3. Find or calculate the best tree

4. Estimate the reliability, robustness of the tree 
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Molecular phylogenetic methods

• Distance based method

Neighbor-joining 
(Saitou & Nei, 1987)

• Character based methods

Maximum parsimony 
(Fitch, 1971)

Maximum likelihood 
(Felsenstein, 1981)

Bayeian inference 
(Rannala & Yang, 1996)
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What is a model?

• Mathematical models are:

– Incomprehensible
–Useless
–No fun at all
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What is a model?

• A matematikai 
modellek:

– Felfoghatatlanok
–Hiábavalóak
–Unalmasak

• Model = hypothesis !!!

• Hypothesis (as used in 
most biological research):

– Precisely stated, but 
qualitative

– Allows you to make 
qualitative 
predictions

• Arithmetic model:

• Mathematically explicit 
(parameters)

• Allows you to make 
quantitative predictions
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The Scientific Method

Observation of data

Model of how system works

Prediction(s) about system 
behavior (simulation)
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Modeling: An example

Observed data:
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Modeling: An example

y = ax + b

Simple 2-parameter model
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Modeling: An example

y = ax + b

Predictions based on model
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y = ax + b

Model Fit, parameter estimation

Measure of how well 
the model fits the 
data: sum of 
squared errors 
(SSE)

• Best parameter 
estimates: those 
that give the 
smallest SSE (least 
squares model 
fitting)
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y = 1,24x - 0,56

Model Fit, parameter estimation

Measure of fit 
between model and 
data: sum of 
squared errors 
(SSE)

• Best parameter 
estimates: those 
that give the 
smallest SSE (least 
squares)
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The Maximum likelihood estimation

In statistics, maximum likelihood (ML) estimation is 
a method of estimating the parameters of a 
statistical model given observations, by finding 
the parameter values that maximize the likelihood 
of making the observations given the parameters.

Likelihood = P (Data | Model) = Probability of the 
data given the model. ( | : conditional probability)

Maximum likelihood: Those parameters of the model 
which give the highest likelihood value to the data.

For a fixed set of data and underlying statistical 
model, the method of maximum likelihood selects 
the set of values of the model parameters that 
maximizes the likelihood function.
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Maximum likelihood – coin tossing

Starting point:

– You have some observed data and a probabilistic model for how 
the observed data was produced

• Example:

– Data: result of tossing coin 10 times - 7 heads, 3 tails

– Model: coin has probability p for heads, 1-p for tails.

– The probability of observing h heads among n tosses is:

• Goal: 

– You want to find the best estimate of the (unknown) parameter 
value based on the observations. 

• (here the only parameter is “p”)
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Probabilistic modeling applied to 
phylogeny

Observed data: multiple alignment of sequences

H.sapiens globin: A G G G A T T C AH.sapiens globin: A G G G A T T C A

M.musculus globin:A C G G T T T – AM.musculus globin:A C G G T T T – A

R.rattus globin:  A C G G A T T - AR.rattus globin:  A C G G A T T - A

Probabilistic model parameters (simplest case):

– Tree topology and branch lengths
–Nucleotide-nucleotide substitution rates 

(or substitution probabilities)
–Nucleotide frequencies: πA, πC, πG, πT
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The Maximum likelihood method

Likelihood provides probabilities of the sequences 
given a model of their evolution on a particular tree.

• The more probable the sequences given the tree, the 
more the tree is preferred.

• The algorithm will choose that tree (topology and 
branch lengths) and model parameter values where 
the likelihood was the greatest.

• All (or a lot) possible trees are considered; 
computationally intense → Heuristic methods are 
applied

• Because the user can choose a model of evolution, the 
method can be useful for widely divergent groups or 
other difficult situations.
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The Maximum likelihood method

Not like in the case of Maximum parsimony, 
Maximum likelihood will considere all sites of 
the aligned sequences.

The method requires a substitution model to 
assess the probability of particular mutations.

It will choose the best tree based upon its 
likelihood value.
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The Maximum likelihood method

The likelihood of hypothesis H: LH=P(D|H)

D: probability of data given hypothesis H

Likelihood of a tree (here the tree is the 
hypothesis):

D(i) : Data at site i

We take the log or ln of the Likelihood (it is 
easier to handle).
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The ML of 2 sequences
 

Sites       1  2
sequence X: A  C
sequence Y: G  C

PAG(t): Probabiliy that A 
become G in time t.

fA: The frequency of A

LXY(t): Likelihood that 
sequence X become 
sequence Y in time t.

PX
i
Y
i
(t): Probabiliy that 

the nucleotide of the ith 
site of sequence X 
become nucleotide of the 
ith site of sequence Y in 
time t.

s: length of sequences
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Computing the probability of an entire alignment 
given tree topology and other parameters

 Probability must be summed 
over all possible 
combinations of ancestral 
nucleotides.

(Here we have two internal 
nodes giving 16 possible 
combinations)

Probability of individual sites 
are multiplied to give the 
overall probability of the 
alignment, i.e., the likelihood 
of the model.

Often the log of the 
probability is used (log 
likelihood)
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ML phylogeny: heuristic tree search

• Data: sequence alignment

• Model parameters: nucleotide frequencies, nucleotide 
substitution rates, tree topology, branch lengths.

1.Choose random initial values for all 
parameters, compute likelihood
2.Change parameter values slightly in 
a direction so likelihood improves
3.Repeat until maximum found

Results:
(1) ML estimate of tree topology
(2) ML estimate of branch lengths
(3) ML estimate of other model 
parameters
(4) Measure of how well model fits 
data (likelihood).
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Advantages of ML method

lower variance than other methods (i.e. estimation method 
least affected by sampling error)

• robust to many violations of the assumptions in the 
evolutionary model, even with very short sequences

– it may outperform alternative methods such as parsimony 
or distance methods.

• has explicit model of evolution that you can make fit the data

• evaluate different tree topologies (vs. NJ)

• use all the sequence information itself (vs. Distance)

• better accounting for branch lengths, e.g. incorporates 
“multiple hits” thereby providing more realistic branch length

• Also, information is derived from sites that would be 
uninformative under parsimony 
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Disadvantages of ML method

very computationally intensive and so slow (though 
this is becoming much less of an issue)

• Misleading results of likelihood-based phylogenetic 
analyses in the presence of missing data.

• the result is dependent on the model used

• questionably applicable to complex data like 
morphology given the difficulty of modeling the 
numerous processes

• philosophically less well established, especially in 
terms the applicability of probabilities and 
statistical measures of unique historical events 
(vs. Parsimony as a general principle).
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y = 1,24x - 0,56

Model selection?

• Measure of fit 
between model and 
data (e.g., SSE, 
likelihood, etc.)

• How do we compare 
different types of 
models?
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Model selection?
Over-fitting: More parameters always result in a better 
fit to the data, but not necessarily in a better description

y = ax + b
2 parameter model: 

Good description, poor fit

y = ax6+bx5+cx4+dx3+ex2+fx+g
7 parameter model: 

Poor description, good fit
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y = 1,24x - 0,56

Selecting the best model

• How to compare 
different models?

• The model describes 
our data better but 
uses less 
parameters should 
be chosen: ie. by → 
Likelihood ratio test
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The Bayesian inference

Bayesian inference of phylogeny uses a 
likelihood function to create a quantity 
called the posterior probability of trees 

• using a model of evolution, based on some prior probabilities

• producing the most likely phylogenetic tree for the given 
data. 

• The Bayesian approach has become popular due to 
advances in computing speeds and the integration of 
Markov chain Monte Carlo (MCMC) algorithms.

• Bayesian inference has a number of applications in 
molecular phylogenetics and systematics.

• There is a popular free software to calculate Bayesian 
phylogenetic trees: MrBayes of Fredrik Ronquist, John 
Huelsenbeck & Paul van der Mark
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The Bayes’ theorem

• P(A|B) is the conditional probability of observing 
A given B is TRUE

• P(B|A) is the conditional probability of observing 
B given A is TRUE

• P(A) and P(B) are probabilities of A and B 
without conditioning on each other
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Bayes – „coin tossing”
Let«s assume:

– We hava a bag of coins

– 90% of the coins are normal (50% heads, 50% tails)

– 10% of the coins are loaded (unfair; 80% heads, 20% tails)

What is the probability that we grab a loaded coin if we pull one out from the 
bag?

If we have no more information: the answer will be 10% (0,1).

This is the prior probability.

If it is allowed to toss the coin 10 times we may change our answer about the 
probability of the loaded coin.

This is how we get the posterior probability.

With which we can make more precise predictions.

If the result of 10 tossing is: X: HHIHHIIHHH

P [ X | normal ] = 0.510 = 9.76 × 10-4

P [ X | loaded ] = 0.87 × 0.23 = 1.67 × 10-3
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We can calculate the posterior probability of the 
loaded hypothesis usoing the Bayes’ theorem

 

P [loaded|X ]= P [ X |loaded ]×P [ loaded ]
(P [X |loaded ]×P [ loaded ] )+ (P [X |normal ]×P [normal ] )

The likelihood of the 
„loadedness”

The prior probability 
of the „loadedness”

Marginal probabilities 
of the data

The poserior probability 
of the „loadedness”
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Result

The probability that the coin was loaded given 
the data (series of heads and tails of 10 
tossing):

If we try to translate this to phylogeny: 
X is the sequence alignment, 
„loaded” are the model parameters: tree 
topology, branch lengths, substitution model 
parameters

P [loaded|X ]=1,67×10
−3×0,1

(1,67×10−3×0,1)+ (9,76×10−4×0,9 )
=0,13
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Infer relationships among three species

 

Outgroup:

© Ronquist
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Three possible trees (topologies):

 

© Ronquist

A

B

C
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© Ronquist

  

A B C

Prior distribution
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Posterior distribution
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b
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ty 1.0

Data (observations)

Model (Hypothesis)
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The Bayes’ theorem

 

© Ronquist

f θ∣X =
f θ  f  X ∣θ 

∫ f θ  f  X ∣θ dθ

Posterior
distribution

Prior distribution ”Likelihood”

Normalizing constant

X = Data, alignemd sequences
Θ = model parameters: 

nucl. subst. model param., 
branchlengths, topology (Theta)



37

Model: topology AND branch lengths

 

© Ronquist

θ Parameters

topology (Tau)  τ 
Branchlengths 
(expected amount
of change)

v i 

A

B

v3

C

D

v 2

v1 v 4
v5

θ= τ , v 
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Posterior probability distribution

 

© Ronquist

Tree 1 Tree 2 Tree 3
θ

f θ∣X 

Parameter space
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We can focus on any parameter of interest 
(there are no nuisance parameters) by 
marginalizing the posterior over the other 
parameters (integrating out the uncertainty in 
the other parameters)

© Ronquist

Tree 1 Tree 2 Tree 3

20% 48% 32%

Percentages denote marginal probability distribution on trees.
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Why is it called marginalizing?

 

© Ronquist

τ1 τ2 τ3

ν1 0 .10 0 .07 0 .12 0 .29

ν 2 0 .05 0 .22 0 .06 0 .33

ν3 0 .05 0 .19 0 .14 0 .38
0 .20 0 .48 0 .32

joint probabilities

marginal probabilities

Trees
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h 

le
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th
 v
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to

rs
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Markov chain Monte Carlo MCMC

Markov chain Monte Carlo methods are a class of 
algorithms for sampling from a probability 
distribution. The state of the chain after a number 
of steps is used as a sample of the desired 
distribution. The quality of the sample improves 
as a function of the number of steps.

It searches the tree with the ML given the 
sequences.

The likelihoods can be converted to real probabilities 
using the Bayes’s theorem (sum to 1).

It doesn’t looks for one best tree but sum up 
(consensus) all good trees.
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Az MCMC robot

 
a

Paul Lewis©
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MCMC

 

© Ronquist

Tree 1 Tree 2 Tree 3

Always accept

Accept sometimes

1. Start at an arbitrary point
2. Make a small random move
3. Calculate height ratio ( r ) of new state to old state:

 r > 1 -> new state accepted

 r < 1 -> new state accepted with probability r . If new state not accepted, stay in the 
old state

4. Go to step 2

The proportion of time the 
MCMC procedure samples 
from a particular parameter 
region is an estimate of that 
region’s posterior probability 
density.

1

2b

2a

20 % 48 % 32 %
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Metropolis-coupled Markov chain Monte Carlo = 
MCMCMC or MC3

It runs not 1 but 4 robots (chains) parallel.

The main robot is the „cold chain”, the other 3 are the 
heated chains. 

The cold chain is the main chain and behaves as before.

The heated chains explore a landscape that is flatter than 
the landscape explored by the cold chain.

They make bigger steps and accept wrong values easier 
than cold chain.

After some generations the cold chain change place with 
one of the heated chains.

Therefore, it is easier for a heated chain to cross deep 
valleys in the landscape and not get stuck in local optima.
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MCRobot Program

Paul Lewis©: 

http://hydrodictyon.eeb.uconn.edu/people/plewis/downloads/
mcrobot21z.exe

http://web.uconn.edu/gogarten/bioinf/mcrobot.html
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Hány generáció szükséges?

Ha elég sok generáción át léptetgetjük a robotokat 
elmondható, hogy egy idő után elég jól felderítik a fa 
és paraméter érték-teret és már csak a legnagyobb 
csúcsok közelében időznek.

Erről úgy győződhetünk meg, ha megnézzük magukat 
a likelihood értékeket.

Ha likelihoodokban elég rég óta nem találunk növekvő 
tendenciát, csak kiegyenlített fluktuációt, akkor 
bízhatunk benne, hogy a jelenleg megtalált 
csúcsoknál magasabbak már nincsenek a fa-térben 
és elkészíthetjük a meglévő legvalószínűbb fákból a 
konszenzusunkat.

Ezt átlagos esetben 5millió generáció után érhetjük el.
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Number of generations (steps)

 

burn-in

stationary phase sampled with thinning
(rapid mixing essential)
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The most important MC3 parameters

Number of generations (millions)

sampling density (ie. from every 100th or 1000th 
generations)

burnin (the first 25%of the samples should be 
considered in the consensus tree)

step length (no need to change)

number of robots (1 cold and 3 heated chain)

number of independent runs (2-4)
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Sources

Anders Gorm Pedersen

Fredrik Ronquist

Wikipedia

Thanks for the authors!
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Thanks for the attention!
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