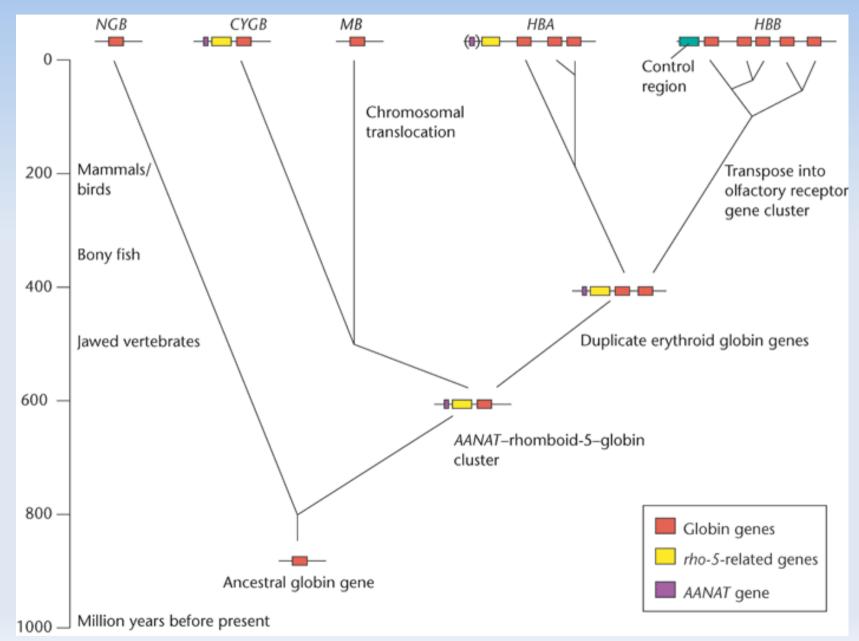
Sequence comparison and alignment


Eszter Ari Dept. of Genetics, ELTE arieszter@gmail.com

genetics.elte.hu username: genetika2017 password: genetika2017

What we will talk about?

- Sequence similarity, alignment
- Number of possible alignments
- Pairwise sequence alignments
 - Pairwise comparisons: "Dot-plot"
 - Scoring systems, substitution matrices: PAM, BLOSUM
 - Optimal alignment
 - Global and local alignments
 - Dynamic programming algorithms: Needleman - Wunsch, Smith - Waterman
- Multiple sequence alignment

The evolution of vertebrate globin genes

Hardison, R. C. 2008. Globin Genes: Evolution. eLS

Differences between homolog sequences

```
10 million years ago
Seq: ATCTCGTTTA
```

```
5 million years ago: gene duplication
SeqA: ATCTCGTTTA
SeqB: ATCTCGTTTA
```

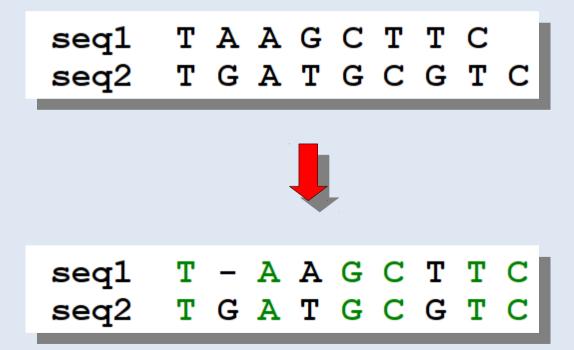
```
5 million years - today: independent mutations
SeqA: AATCTCGT(T/C)TA
SeqB: ATCGTCGTTT(A/T)
```

today:

- SeqA: AATCTCTCTA
- SeqB: ATCGTCGTTTT

Alignment that reflect the evolution: SeqA: AATC-TC-TCTA SeqB: -ATCGTCGTTTT

Human Alpha and Beta hemoglobin

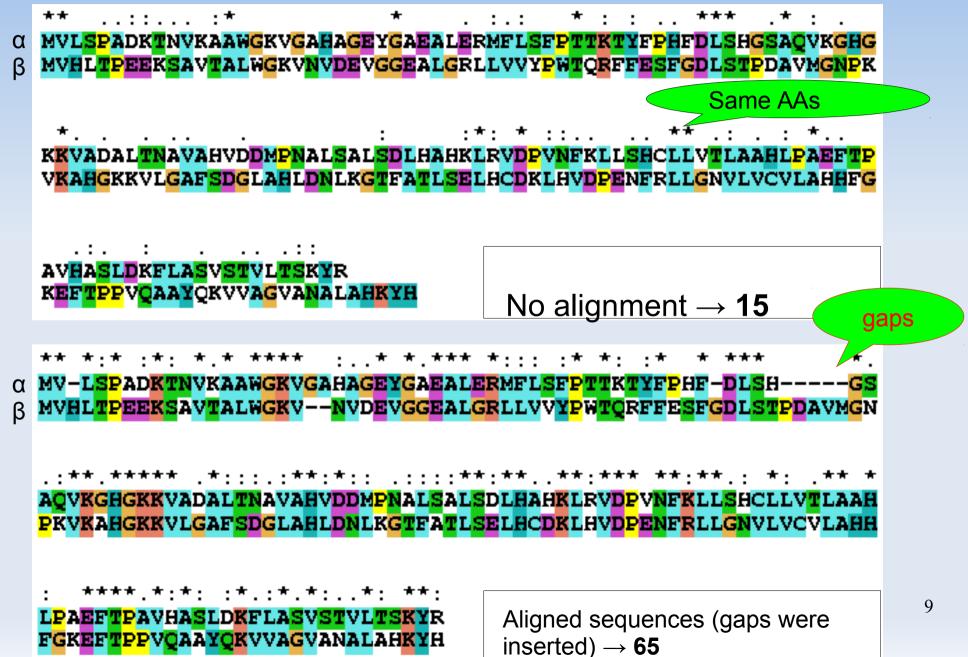

>sp|P69905|HBA_HUMAN Hemoglobin subunit alpha MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG KKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTP AVHASLDKFLASVSTVLTSKYR >sp|P68871|HBB_HUMAN Hemoglobin subunit beta MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK VKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFG KEFTPPVQAAYQKVVAGVANALAHKYH

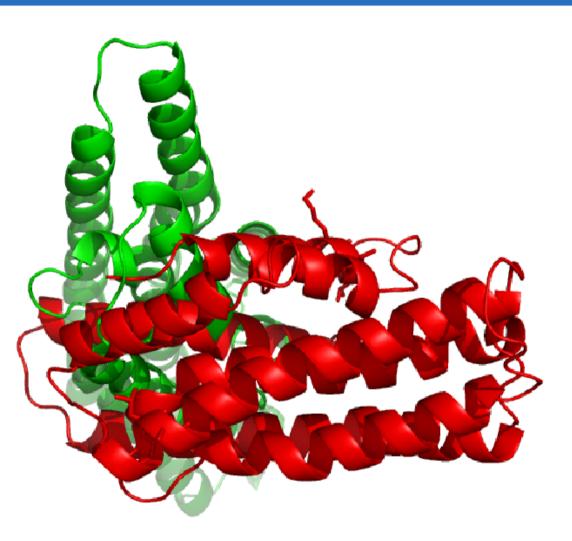
The goals of sequence alignment

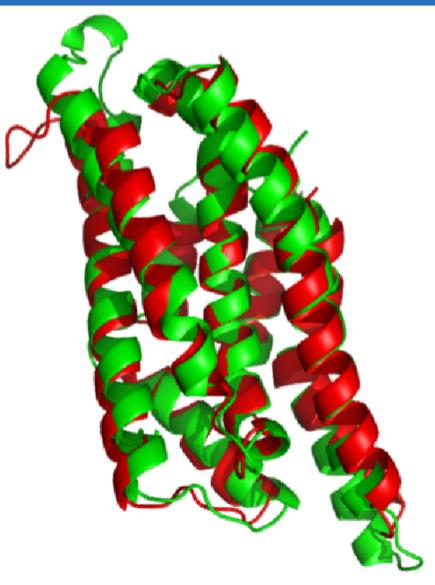
Direct goal:

 Insert gaps between the residues so that identical or similar characters are aligned in successive sites.

The goals of sequence alignment

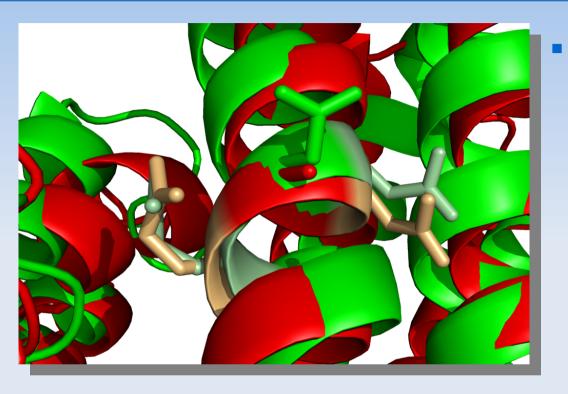

- A lot of bioinformatic tasks contains sequence alignmet → the result is dependent on the quality of alignmnet
- Ideal alignment: reflect to evolution (substitutions, in/dels)
- Indirect goals:
 - Similarity searches in sequence databases
 - Phylogenetic and populationgenetic analyses
 - Prediction of structure and function
 - Gene prediction and annotation
 - Comparison of whole genome sequences
 - Pattern search: i.e promoter regions
 - Genome sequencing: assembly, mapping


The two approaches of sequence analysis


- Based on sequence similarity:
 - Structure and function prediction
 - Similar sequences \rightarrow similar structures \rightarrow similar functions
 - In most cases this is valid, except when not
- Ab initio prediction:
 - DNA sequence → protein sequence prediction → protein structure prediction → protein function prediction
 - So far very limited application...

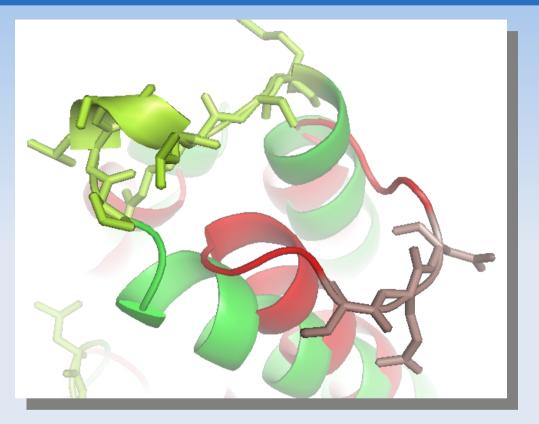
Why do we need alignment softwares?

Structural alignmnet



Before structural alignmnet

After structural alignment

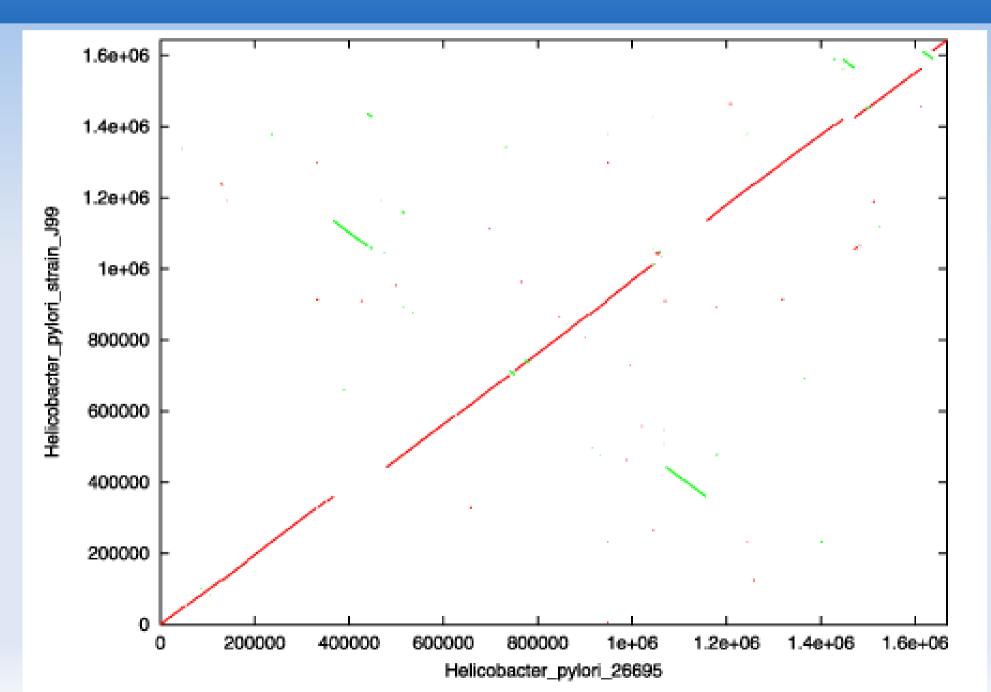

Bacteria toxin: 1ji6 and insecticide protein: 1i5p

Structural alignmnet

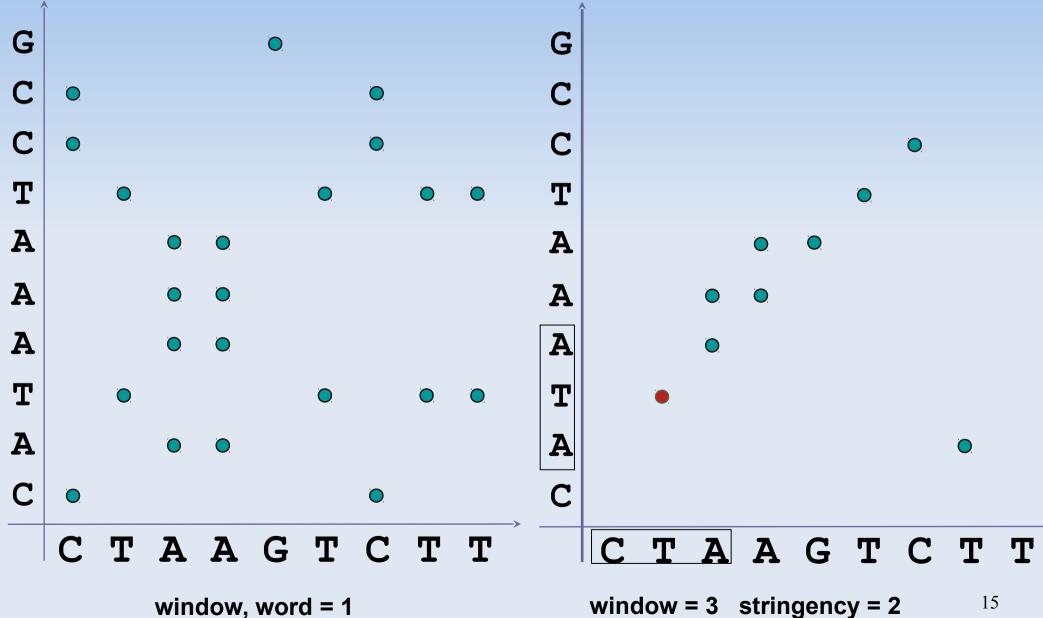
Establish homology between two or more polymer structures based on their shape and three-dimensional conformation.

Szerkezeti egyezés

Unalignable regions
 → gaps are inserted

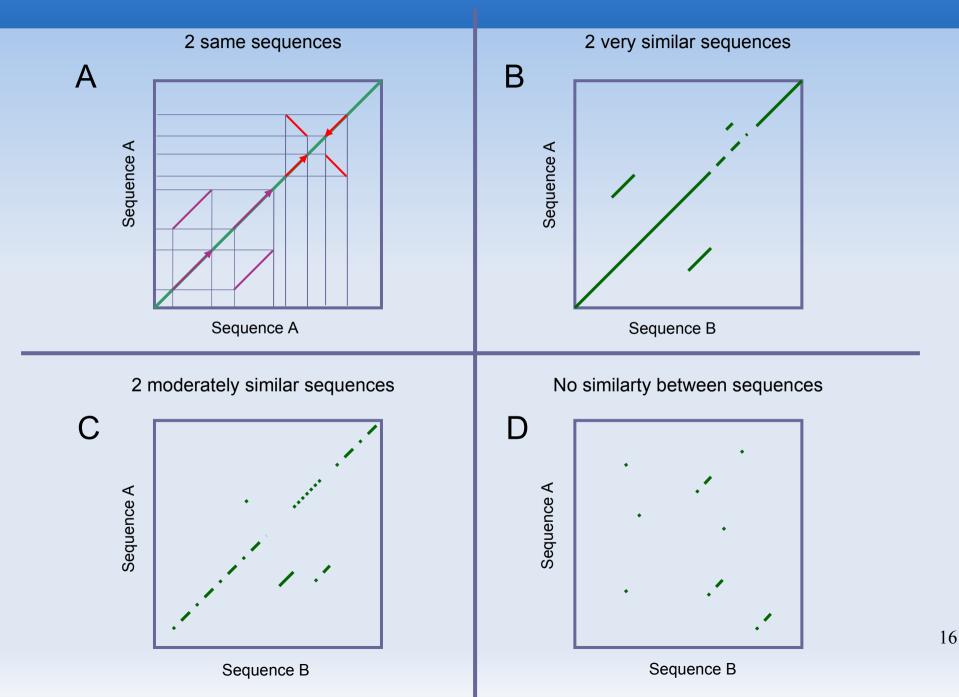

1i5p: ...DNFLNPTQN----PVPLSITSSVN...
|||||||
ji6: ...NSWKKTPLSLRSKRSQDRIRELFS...

Pairwise sequence alignments: "Dot-plot"

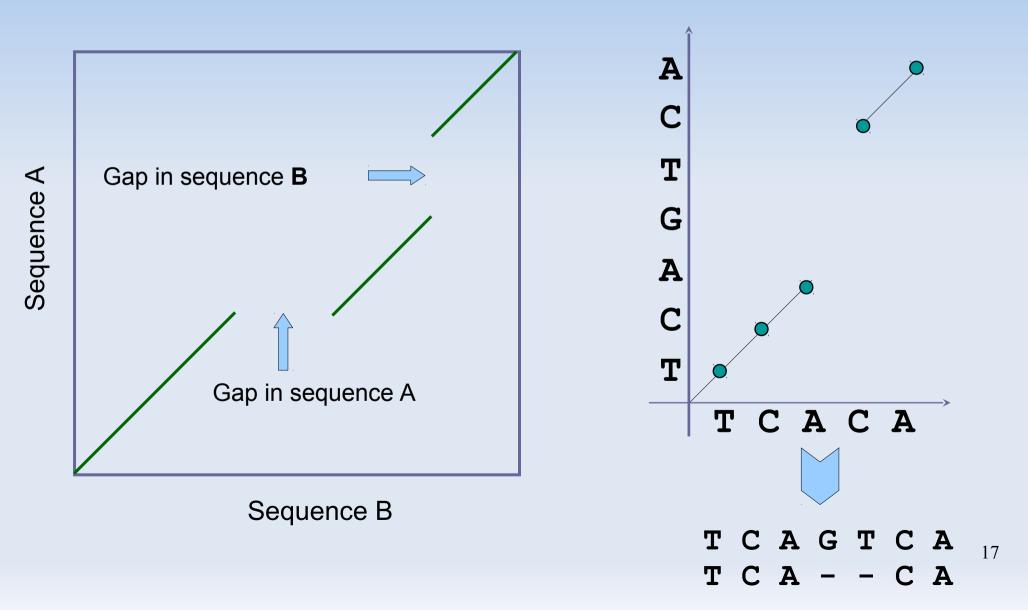


13

The "dot-plot"



The "dot-plot"



window, word = 1

How to interpred the Dot-plot?

Places of gaps

Dot-plot sofwares

EMBOSS

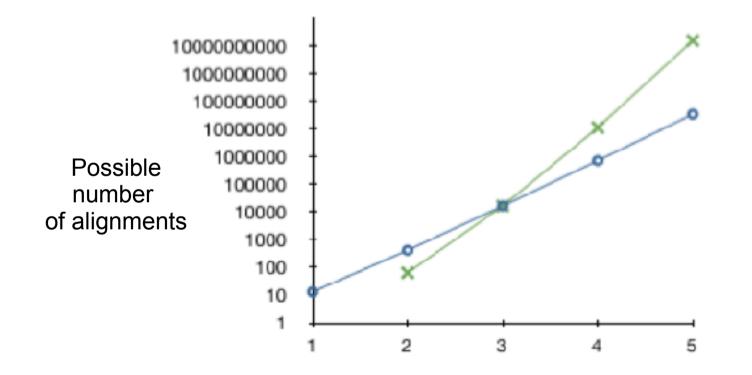
- dottup
- dotpath
- polydot
- dotmatcher
- WWW, Java:

- http://myhits.isb-sib.ch/cgi-bin/dotlet
- http://pgrc.ipk-gatersleben.de/jdotter/

Number of possible alignments

How many possible sequence alignments are there?

SeqA:M SeqB:T


SeqC:A

SeqA:M-	SeqA:M-	SeqA:M-	SeqA:-M	SeqA:-M	SeqA:M-
SeqB:T-	SeqB:-T	SeqB:-T	SeqB:-T	SeqB:T-	SeqB:-T
SeqC:-A	SeqC:-A	SeqC:A-	SeqC:A-	SeqC:A-	SeqC:A-
SeqA:M	SeqA:M	SeqA:-M-	SeqA:M	SeqA:M	SeqA:-M-
- SeqB:-T-	- SeqB:T	- SeqB:T	- SeqB:T	- SeqB:-T-	- SeqB:T
SeqC:A	SeqC:-A-	SeqC:A	SeqC:-A-	SeqC:A	SeqC:A

13 possible alignments

Number of possible alignments

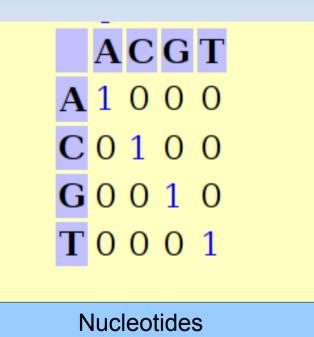

Growing (faster than) exponentially!

Seq. lengths (in case of 3 sequences)

Nr. of sequences (in case of 3 as/nt long sequences)

Alignment scores: Scoring matrices

Scoring of an alignment


Scores based on a substitution matrix

A	Ala											
С	Cys	PAM2:	50:									
D	Asp											
Ε	Glu											
F	Phe											
G	Gly											
Н	His	a 1			_	_	-	_	_	_		
I	Ile	Seq 1:	Μ	Ν	Α	L	S	D	R	Т		
K	Lys	-										
L	Leu	Seq 2:	Μ	S	D	R	Т	Т	Ε	Т		
М	Met	sey z.	INI	5	U	R	–	<u>ـ</u>	يتل.	-		
Ν	Asn											
Р	Pro	score	6	+1	+0	-3	+1	+0	-1	+3	=	7
Q	Gln		Ũ	· _		Ũ	· _		_			•
R	Arg											
S	Ser											
Т	Thr											
Y	Tyr											
V	Val											
W	Trp											

Scoring systems, substitution matrices

- To score the level of similarity in between two sequences.
- Main types:
 - Identity matrix
 - Identity: 1, difference: 0 (or -4 and 5).
 - Mostly applied for nucleotide sequences
 - Chemical property based matrices
 - Polar, apolar, size, shape, charge, etc.
 - Substitution matrices
 - Describes the rate at which one character in a sequence changes to other character states over time.
 - The similarity between sequences depends on their divergence time and the substitution rates as represented in the matrix.

Identity matrices

S н R κ С G F 0 п 0 S Θ 0 т Θ Θ Ρ Θ Θ 0 Θ 0 G Θ 0 N Θ Θ D 0 Θ 0 E Θ Θ Θ 0 0 Θ 0 H Θ 0 R 0 0 Θ ĸ 0 Θ 0 Т Θ 0 Θ Θ 0 V Θ Θ ю 0 0 О 0 F Θ Θ Ю 0 Y 0 Θ Θ Θ 0 W 0 01 Θ 0 Θ Θ Θ Θ 0 Θ 0 0 Θ Θ Θ

Amino acids

Substitution matrices: PAM

- Invented by Margaret Dayhoff (1970s)
 - PAM = APM = Accepted Point Mutation
 - is the replacement of a single amino acid in the primary structure of a protein with another single amino acid, which is accepted by the processes of natural selection.
 - Each entry in a PAM matrix indicates the likelihood of the amino acid of that row being replaced with the amino acid of that column
 - The calculation of these matrices were based on 1572 observed mutations in the phylogenetic trees of 71 families of closely related proteins. The proteins to be studied were selected on the basis of having high similarity (at least 85% identity).

Zvelebil, Baum, Understanding bioinformatics.

Positive score – frequency of substitutions is greater than would

PAM 120

														h	ave	occi	urrec	byı	rand	lom	hchan	ce.
С	9																	£				-14-
s	-1	4	sn	nall,	ро	lar										expe					sequ	110
т	-1	1 5													iure	The	0100	290	anset i			
Ρ	-3	-1 -	17			sm	all	nor	าทด	lar				111112	-						ncy is	1212-314-015-8
А	0	1 C) -1	4		511	un,	101	ηρυ								dha	veo	ccu	rrec	d by ra	indom
G	-3	0 -	2 -2	0	6									С	han	ce.						
Ν	-3	1 0	-2	-2	0	6																
D	-3	0 -	1 -1	-2	-1	1	6		p	ola	r or	· ac	idic	1								
Е	-4	0 -	1 -1	-1	-2	0	2	5														
Q	-3	0 -	811 - 31	-1	-2	0	0	2	5													
н	-3	-1 -	2 -2	-2		1	-1	0	0	8			bas	aic								
R	-3	-1 -	1 -2	-1	-2	0	-2	0	1	0	5		Dat	310								
к	-3	0 -	1 -1	-1	-2	0	-1	1	1	-1	2	5										
Μ	-1	-1 -				-2		-2	0	-2	-1	-1	5			larg		hvd	ron	ho	hic	
T	-1	-2 -			100	-3	-3	-3	-3	-3	-3	-3	1	4		iai g	, , i	nyu	op		510	
L	-1	-2 -			-4	-3		-3	-2	-3		-2	2	2	4		3					
V	-1	-2 0			-3	-3	-3	-2		-3	3	2	1	3	1	4						
F		-2 -								-1	-3	-3	0	0	0	-1	6		a	iror	matio	2
Y		-2 -	2 -3		-3	-2		-2	-1	2		-2	-1	-1	-1	-1	3	7				
w	-2	-3 -	2 -4	-3	-2	-4	-4	-3	-2	-2	-3	-3	-1	-3	-2	-3	1	2	11			
	С	S -	Г Р	A	G	N	D	E	Q	н	R	K	M	1	L	V	F	Y	W			

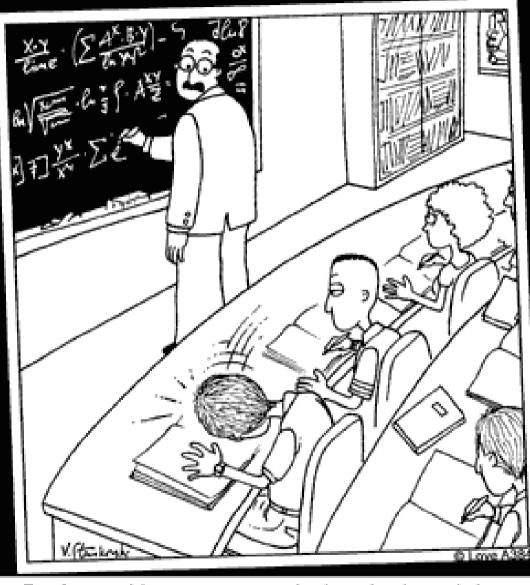
Different PAM matrices

Difference %	PAM (evol. distance)
1	1
10	11
20	23
30	38
40	56
50	80
60	112
70	159
80	246

- Disadvantages of PAM matrices:
 - Below 85% if identity all other matrices were just extrapolated from the original PAM matrices
 - Based on a limited number of sequences.

PAM 10 matrix (~ 90% seq. identity)

		1																				
Α	7		_																		А	Ala
R	-10	9																			С	Cys
N	-7	-9	9																		D	Asp
	-6	-17	-1	8]																E	Glu
D					10	1															F	Phe
C	-10	-11	-17	-21	10		1														G	Gly
Q	-7	-4	-7	-6	-20	9															Н	His
Ē	-5	-15	-5	0	-20	-1	8														I	Ile
G	-4	-13	-6	-6	-13	-10	-7	7													K	Lys
H	-11	-4	-2	-7	-10	-2	-9	-13	10]											L	Leu
п	-8	-8	-8	-11	-9	-11	-8	-17	-13	9	1										М	Met
	-											1									Ν	Asn
L	-9	-12	-10	-19	-21	-8	-13	-14	-9	-4	7		1								P	Pro
Κ	-10	-2	-4	-8	-20	-6	-7	-10	-10	-9	-11	7									Q	Gln
Μ	-8	-7	-15	-17	-20	-7	-10	-12	-17	-3	-2	-4	12								R	Arg
F	-12	-12	-12	-21	-19	-19	-20	-12	-9	-5	-5	-20	-7	9							S	Ser
-	-4	-7	-9	-12	-11	-6	-9	-10	-7	-12	-10	-10	-11	-13	8]					T	Thr
P																	1				Y	Tyr
S	-3	-6	-2	-7	-6	-8	-7	-4	-9	-10	-12	-7	-8	-9	-4	7					V	Val
Τ	-3	-10	-5	-8	-11	-9	-9	-10	-11	-5	-10	-6	-7	-12	-7	-2	8				W	Trp
W	-20	-5	-11	-21	-22	-19	-23	-21	-10	-20	-9	-18	-19	-7	-20	-8	(-19)	13				
V	-11	-14	-7	-17	-7	-18	-11	-20	-6	-9	-10	-12	-17	-1	-20	-10	-9	-8	10			
V	-5	-11	-12	-11	-9	-10	-10	-9	-9	-1	-5	-13	-4	-12	-9	-10	-6	-22	-10	8		
V								-		-	-						T					
	Α	R	Ν	D	C	Q	E	G	Η			K	Μ	F	P	S	T	W	Y	V		28

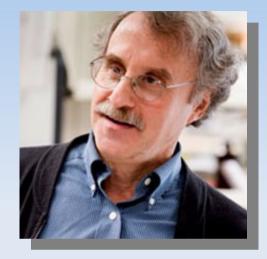

28

PAM 250 matrix (~ 20% seq. identity)

-	1	1																				
Α	2																				А	Ala
R	-2	6																			С	Cys
N	0	0	2																		D	Asp
	0	-1	2	Δ	1																Ε	Glu
D				4	10																F	Phe
C	-2	-4	-4	-5	12		1														G	Gly
Q	0	1	1	2	-5	4		1													Η	His
E	0	-1	1	3	-5	2	4														Ι	Ile
G	1	-3	0	1	-3	-1	0	5													K	Lys
	-1	2	2	1	-3	3	1	-2	6												L	Leu
H									6	_											М	Met
I	-1	-2	-2	-2	-2	-2	-2	-3	-2	5		1									N	Asn
L	-2	-3	-3	-4	-6	-2	-3	-4	-2	-2	6		1								P	Pro
K	-1	3	1	0	-5	1	0	-2	0	-2	-3	5									Q	Gln
Μ	-1	0	-2	-3	-5	-1	-2	-3	-2	2	4	0	6								R	Arg
F	-3	-4	-3	-6	-4	-5	-5	-5	-2	1	2	-5	0	9]						S	Ser
-	-3									1											T Y	Thr
P		0	0	-1	-3	0	-1	0	0	-2	-3	-1	-2	-5	6		1				T V	Tyr
S	1	0	1	0	0	-1	0	1	-1	-1	-3	0	-2	-3	1	2		1			W	Val
Τ	1	-1	0	0	-2	-1	0	0	-1	0	-2	0	-1	-3	0	1	3		_		VV	Trp
W	-6	2	-4	-7	-8	-5	-7	-7	-3	-5	-2	-3	-4	0	-6	-2	-5	17				
Y	-3	-4	-2	-4	0	-4	-4	-5	0	-1	-1	-4	-2	7	-5	-3	-3	0	10			
V	0	-2	-2	-2	-2	-2	-2	-1	-2	4	2	-2	2	-1	-1	-1	0	-6		4		
	A	R	N	D	C	0	E	G	H	T	T	K	M	F	Р	S	Т	W	V	V		
						Y		U	11			17		L .		D		V V		V		29

ムフ

Snapshots at jasonlove.com


Professor Herman stopped when he heard that unmistakable thud -- another brain had imploded.

Az észlelt helyettesítéseken alapuló mátrixok II.

 BLOSUM mátrixok: BLOcks SUbstitution Matrix

TE XO

- Steven Henikoff & Jorja G. Henikoff 1992
- Based on BLOCKS database: (http://blocks.fhcrc.org/)
- Blocks are multiply aligned ungapped segments corresponding to the most highly conserved regions of proteins.

BLOCKS databes \rightarrow **BLOSUM**

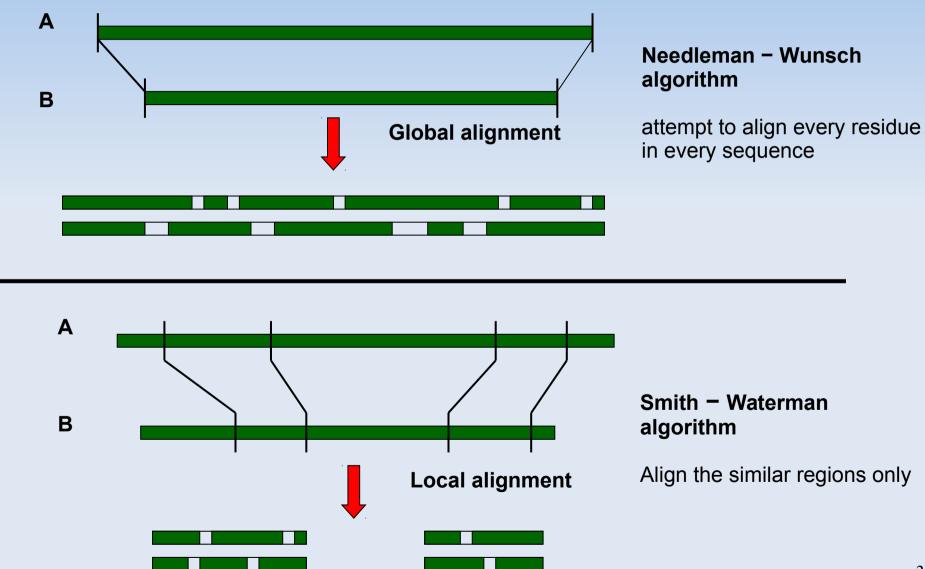
- They scanned the BLOCKS database for very conserved regions of protein families
 - that do not have gaps in the sequence alignment
 - and then counted the relative frequencies of amino acids and their substitution probabilities.
- All BLOSUM matrices are based on observed alignments; they are not extrapolated from comparisons of closely related proteins like the PAM Matrices.
- BLOSUM62: midrange
- BLOSUM80: more related proteins
- BLOSUM45: distantly related proteins
- In most of the cases gives better results than using PAM matrices.

BLOSUM62 scoring matrix

		1																				_
Α	4		1																		A	Ala
R	-1	5																			С	Cys
Ν	-2	0	6																		D	Asp
D	-2	-2	1	6]																Ε	Glu
C	0	-3	-3	2		1															F	Phe
		-3		-3	2		1														G	Gly
Q	-1	1	0	0	-3	5															Н	His
E	-1	0	0	2	-4	2	5														I	Ile
G	0	-2	0	-1	-3	-2	-2	6													K	Lys
H	-2	0	1	-1	-3	0	0	-2	8]											L	Leu
			2								1										М	Met
Ī	-1	-3	-3	-3	-1	-3	-3	-4	-3	4		1									N	Asn
L	-1	-2	-3	-4	-1	-2	-3	_4	-3	2	4										P	Pro
K	-1	2	0	-1	-1	1	1	-2	-1	-3	-2	5									Q	Gln
Μ	-1	-2	-2	-3	-1	0	-2	-3	-2	1	2	-1	5]							R	Arg
F	-2	-3	-3	-3	-2	-3	-3	-3	-1	0	0	-3	0	6	7						S	Ser
																1					T	Thr
P	-1	-2	-2	-1	-3	-1	-1	-2	-2	-3	-3	-1	-2	-4			1				Y	Tyr
S	1	-1		0	-1	0	0	0	-1	-2	-2	0	-1	-2	-1	4		-			V	Val
Τ	0	-1	0	-1	-1	-1	-1	-2	-2	-1	-1	-1	-1	-2	-1	1	5				W	Trp
W	-3	-3	-4	-4	-2	-2	-3	-2	-2	-3	-2	-3	-1	1	<mark>-4</mark>	-3	-2	11				
Y	-2	-2	-2	-3	-2	-1	-2	-3	2	-1	-1	-2	-1	3	-3	-2	-2	2	7			
V	0	-3	-3	-3	-1	-2	-2	-3	-3	3	1	-2	1	-1	-2	-2	0	-3	-1]	
•			N	D	C		E	G	H	I	L	K		F	P	S	T	W	Y	V	-	
	Α	R		D	U	Q	Ľ	U	п	I	L	N	Μ	ſ	ľ	3	I	VV	ľ	V		33

BLOSUM – PAM correspondences

BLOSUM90 PAM30	BLOSUM80 PAM120	BLOSUM62 PAM180	BLOSUM45 PAM240	A B A	Ala Asp,Asn
		I AMIOU		С	Cys
				D	Asp
More similar			More different	E	Glu
				F	Phe
sequences			sequences	G H	Gly His
				Т	Ile
Scoring with P	AM250:			K	Lys
-				L	Leu
Identities =	36/52 (69%), Po	sitives = $47/52$ ((90%)	М	Met
				Ν	Asn
seq A: KM <mark>GP</mark> C	FTKALGHGVDLGHI Y	GDNLERQYQLRLFKD	GKLKYQVLDGEMYPPSV	P	Pro
GP-	FTK+ HGVDL+HIY	G++LERQ +LRLFKD	GK+KYQ+++GEMYPP+V	Q	Gln
sea B: ERGPA	FTKCKNHCVDLSHTY	GESLEBOHKLBLEKD	GKMKYQMINGEMYPPTV	R	Arg
				S	Ser
Scoring with B				T V	Thr
				V W	Val Trp
Identities =	36/52 (69%) PO	sitives = 46/52 ((88%)	X	Xxx
		5101705 10, 52		Y	Tyr
seq A: KMGPO	GETKALGHGVDLGHTY	GDNLEROYOLRLEKD	GKLKYQVLDGEMYPPSV		Glu,Gln
+ GP		~ ~	~	*	End
		~	GK+KYQ+++GEMYPP+V		
seq B: ERGPA	AFTKGKNHGVDLSHIY	GESLERQHKLRLFKD	GKMKYQMINGEMYPPTV		


Pairwise sequence alignment algorithms

"Optimal" alignments

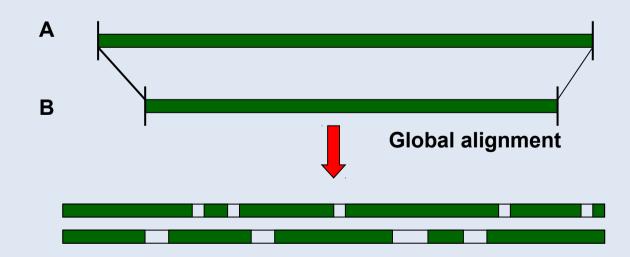
- Sequence alignmnet: Shows where 2 sequences are similar or different from each other
- Mathematically optimal alignment: which maximize the similarity measure of sequences (alignment score).
- The result is based on the scoring matrix and the applied alignment method.
 - We can overrule the alignment by hand if necessary

Global and local pairwise alignments

Fixed

- or based on the length of the inserted gap
 - \rightarrow affine gap penalty: w_{χ}
 - Gap opening penalty (bigger): g
 - Gap extension penalty (smaller): r
 - $W_{\chi} = g + r \times \chi$
 - *x*: length of the gap
- The scores are related to the scoring matrix

Gap penalties


Using affine gap penalty:

• Without affine gap penalty:

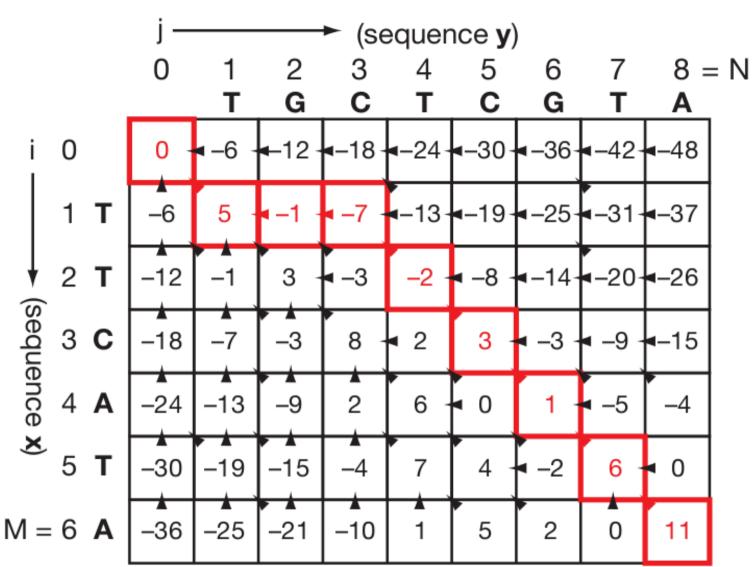
• Which has more relevance in biological sense?

Global alignment

- Needleman Wunsch algorithm
 - Needleman and Wunsch 1970
 - divides a large problem (e.g. the full sequence) into a series of smaller problems and uses the solutions to the smaller problems to reconstruct a solution to the larger problem.
 - Using a Dynamic Programming algorithm

Dynamic programming matrix:

Example of Dynamic programming


scoring:

match: +5

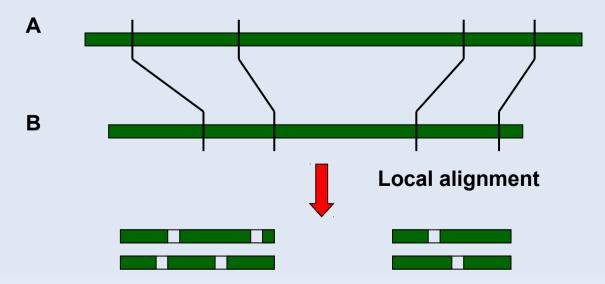
mismatch: -2

in/del (gap): -6

Eddy SR. (2004) What is dynamic programming? Nat Biotechnol, 22(7):909-10.

Optimum alignment scores 11:

T - - T C A T A T G C T C G T A +5 -6 -6 +5 +5 -2 +5 +5



ALIGNMENT

Quit quibbling over it and kick evil's ass.

Local alignment

- Smith Waterman algorithm
 - Smith and Waterman 1981
 - determining similar regions between two sequences.
 - Instead of looking at the entire sequence, compares segments of all possible lengths and optimizes the similarity measure.
 - Uses Dynamic programming algorithm.

Pairwise alignments

Global alignment

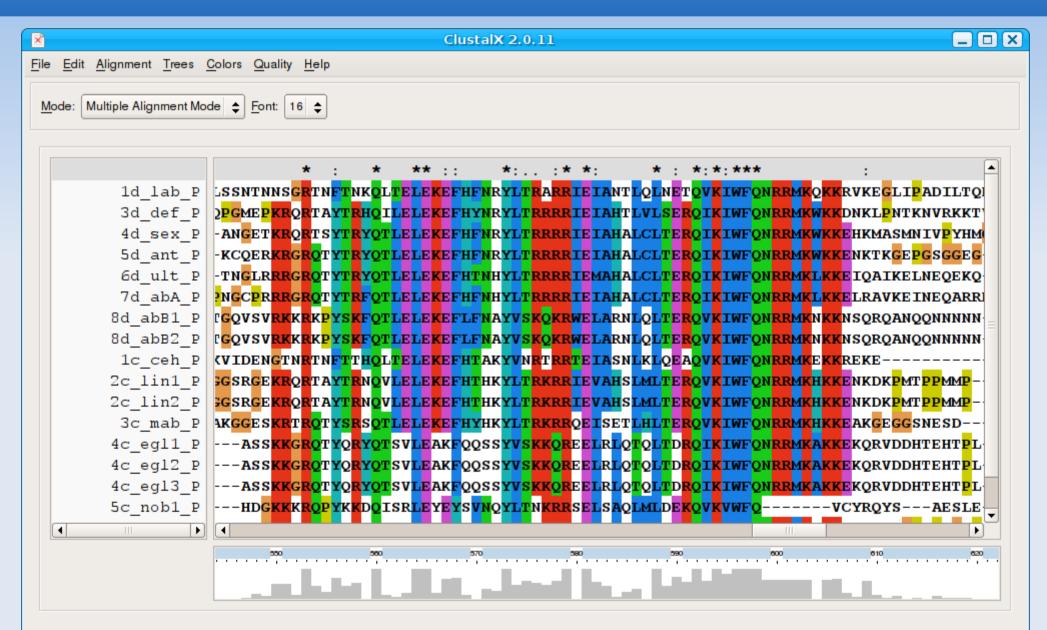
seq1	Μ	-	N	Α	L	S	D	R	т		
seq2	Μ	G	S	D	R	т	т	Е	т		
score	6	-12	1	0	-3	1	0	-1	3	=	-5

Global alignment with no gap penalties at the sequence ends

	seq1	Μ	N	A	L	S	D	R	т	-	-	-		
	seq2	-	-	М	G	S	D	R	т	т	Ε	т		
	score	0	0	-1	-4	2	4	6	3	0	0	0	=	10
 Local alignment 														
	seq1					S	D	R	т					
	seq2					S	D	R	т					
	score					2	4	6	3	=	15			

What software should I use?

- Global alignment (Needleman Wunsch)
 - EMBOSS: needle; stretcher (for long sequences)
- Local alignment (Smith Waterman)
 - EMBOSS: water; matcher (for long sequences)
 - sim (optimal and sub-optimal alignments)
 - FASTA3 package: ssearch3; lalign (even suboptimal alignmnets)
- Web:
 - http://bioweb2.pasteur.fr/
 - Similarity searches in databases:
 - EBI: SSEARCH (http://www.ebi.ac.uk/services/other-software) based on the Smith - Waterman algorithm
- Warning: Softwares will give you a result even where there is no biological sense!


Differences in between alignments

Multiple sequence alignment

All the columns that contains only the gaps, are removed!

Is it simple or complicated?

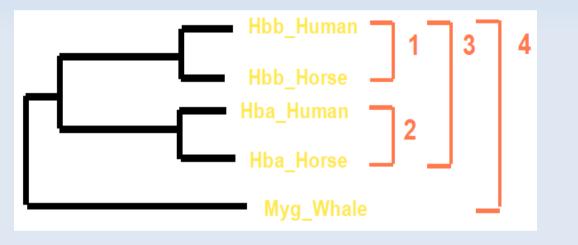
GCGGCCCA	TCAGGTAGTT	GGTGG	
GCGGCCCA	TCAGGTAGTT	GGTGG	
GCGTTCCA	TCAGCTGGTT	GGTGG	
GCGTCCCA	TCAGCTAGTT	GGTGG	
GCGGCGCA	TTAGCTAGTT	GGTGA	
******	******	****	

Simple

- TTGACATG CCGGGG---A AACCG TTGACATG CCGGTG--GT AAGCC TTGACATG -CTAGG--A ACGCG TTGACATG -CTAGGGAAC ACGCG TTGACATC -CTCTG---A ACGCG ****** ???????? *****
- Complicated
 - Because of in/dels

3 base methods

Manually


- Applicable when sequences are very similar, almost identical
- Automatic
 - Using an alignment software (e.g. ClustalW, -Ω, T-Coffee, MUSCLE)
- Combining the above two
 - Correcting the software provided alignment by hand
 - Based on other information (e.g. structure, phylogeny)

Automatic methods for multiple alignment

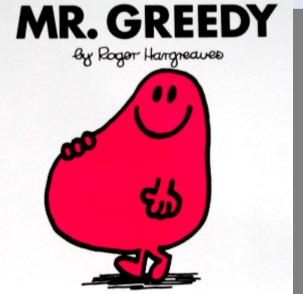
- With dynamic programming algorithms
 - Huge computational demand
 - \rightarrow maximum 10 average length protein sequences
 - MSA (Lipman et al., 1989) Global Optimal Multiple Sequence Alignment Program
 - DCA (Stoye et al., 1997) Divide-and-Conquer Alignment
- Stochastic methods, iterative strategies, progressive alignment
 - Robust, less sensitive to the number of sequences
 - It is not guaranteed that it will find the optimal alignment

Progressive multiple alignment

Hbb_Human 1 -Hbb_Horse 2 .17 -Hba_Human 3 .59 .60 -Hba_Horse 4 .59 .59 .13 -Myg Whale 5 .77 .77 .75 .75 -

Hbb_Human PEEKSAVTALWGKVN--VDEVGG Hbb_Horse GEEKAAVLALWDKVN--EEEVGG Hba_Human PADKTNVKAAWGKVGAHAGEYGA Hba_Horse AADKTNVKAAWSKVGGHAGEYGA Myg Whale EHEWQLVLHVWAKVEADVAGHGQ

 Fast pairwise alignments: → distance matrix


2. Neighbor-joining guide tree

3. Progressive alignmnet using the guide tree

Drawbacks of progressive alignment methods

- Local minimum problem:
 - Greedy algorithm
 - The algorithm doesn't correct misaligned regions
 - Once a gap is inserted it will stay in the alignment
 - Causes of problems in most of the times: Incorrect guide tree

Softwares for multiple alignment

- ClustalW (ClustalW2, ClustalX, ClustalX2, ClustalΩ)
 - Most cited paper, mostly applied sequence aligner
 - Pro: relatively fast and uses not too much memory
 - Contra: for global alignment only.
 - Windows, Linux, Mac installers: http://www.clustal.org/
 - On-line: e.g. http://www.ebi.ac.uk/Tools/msa/clustalo/
- Multalin
 - Iterative: it regenerate the guide tree after alignment and restart to align
 - http://bioinfo.genotoul.fr/multalin/multalin.html
- TCoffee
 - Pro: Better than ClustalW when aligning less similar sequences
 - Contra: 2X slower than ClustalW
 - http://www.tcoffee.org/
- http://en.wikipedia.org/wiki/List_of_sequence_alignment_software

- I used some slides of Dr. Aidan Budd and Dr. Gábor Tóth (with their approval).
- Thanks to the original authors.

Thank you for the attention!

