O©ooO~NO U WNE

=
©

12
13
14
15
16
17
18
19

20

21

22
23

24
25
26
27
28

29
30
31
32
33
34
35
36
37
38
39
40

a1
42
43

a4

45

46
47
48
49
50
51

B B B L R e e
Mapping and counting RNA-seq reads with Rsubread R Bioconductor package
B B B L R e e

HitHHH

Toy example

HitHHH

small sample of reads (56,168 read-pairs) from a single replicate

sequencing: strand specific, paired-end, Illumina, 100-100nts

small chromosome fragment (1-839990 nt part of the 3L chromosome of Drosophila
simulans contains 96 genes)

HEHITH

Mapping

HEHITH

Call Rsubread library
library(Rsubread)

Indexing reference genome
buildindex(basename="Genome_sequence_ToyExample_index",
reference="../Data/Genome_sequence_ToyExample.fa", memory=1500)

p7 at Rsubread.pdf: An index needs to be built before read mapping can be
performed. This function creates a hash

table for the reference genome, which can then be used by Subread and Subjunc
aligners for read

alignment.

Highly repetitive subreads (or uninformative subreads) are excluded from the
hash table so as to

reduce mapping ambiguity.

HEHHH?

Check how many uninformative subreads were found!

Open Genome_sequence_ToyExample.fa fasta file with "less'" unix command in
another terminal.

Can you see potential uninformative regions in the genome?

HEHHH?

Mapping reads

subjunc(index="Genome_sequence_ToyExample_index",
readfilel="../Data/Trimmed_reads_ToyExample_1.fq",
readfile2="../Data/Trimmed_reads_ToyExample_2.fq",

input_format="FASTQ",

output_format="BAM", output_file="Mapped_reads_ToyExample.BAM",

nthreads=1, phredOffset=64, unique=TRUE,

minFraglLength=50, maxFragLength=10000, PE_orientation="fr")

p2 at Rsubread.pdf: Subjunc perform global alignments. The seed-and-vote
paradigm

enables efficient and accurate alignments to be carried out."

phredoffset: sanger 33; illumina 64

PE_orientation: character string giving the orientation of the two reads from
the same pair. It

has three possible values including fr, ff and rf. Letter f denotes the
forward

strand and letter r the reverse strand. fr by default (ie. the first read in
the pair

1s on the forward strand and the second read on the reverse strand).

HHUHBH?
Copy the "Summary" here!
HHUHBH?

52
53
54
55

56

57

58
59

60
61
62
63
64
65

66
67

68

69

70

71

72

73

74

75

76

77

78
79

80

81
82
83
84
85
86
87
88

HEHITH

Counting

HEHITH

Counts_ToyExample=featureCounts(files="Mapped_reads_ToyExample.BAM",
annot.ext="../Data/Genome_annotation_ToyExample.gtf", isGTFAnnotationFile=T,

GTF.featureType="exon", GTF.attrType="gene_id", useMetaFeatures=T,
isPairedEnd=T, requireBothEndsMapped=T, checkFragLength=F, nthreads=1,
strandSpecific=2, reportReads=T)

pl2 at Rsubread.pdf: This function assigns mapped sequencing reads to genomic
features

GTF.featureType: a character string giving the feature type used to select
rows in the

GTF annotation which will be used for read summarization. exon by default.

GTF.attrType: a character string giving the attribute type in the GTF
annotation which will be

used to group features (eg. exons) into meta-features (eg. genes). gene_id by
default.

useMetaFeatures: logical indicating whether the read summarization should be
performed at the

feature level (eg. exons) or meta-feature level (eg genes). If TRUE, features
in

the annotation (each row is a feature) will be grouped into meta-features
using

their values using the “gene_id" attribute in the GTF-format annotation file,
and reads will assiged

to the meta-features instead of the features.

requireBothEndsMapped: logical indicating if both ends from the same fragment
are required to be

successfully aligned before the fragment can be assigned to a feature or
metafeature.

checkFragLength: logical indicating if the two ends from the same fragment
are required to satisify

the fragment length criteria before the fragment can be assigned to a feature
or

meta-feature. The fragment length criteria are specified via minFraglLength and
maxFragLength.

strandSpecific: integer indicating if strand-specific read counting should be
performed. It has

three possible values: 0 (unstranded), 1 (stranded) and 2 (reversely
Stranded).

reportReads: logical indicating if read counting result for each
read/fragment is saved to a

file. If TRUE, read counting results for reads/fragments will be saved to a
tab-

delimited file that contains four columns including name of read/fragment,
sta-

tus(assigned or the reason if not assigned), name of target feature/meta-
feature

and number of hits if the read/fragment is counted multiple times. Name of the
file is the same as name of the input read file except a suffix
‘.featureCounts’ 1is

added. Multiple files will be generated if there is more than one input read
file.

HEHHH?

What pecentage of the reads were counted in total?

HEHHH?

pl6 at Rsubread.pdf: Description of featureCounts variable

Names of objects of the featureCounts variable

89
90
91
92
93
94
95
96
97
98
99

100
101
102

103

104

105
106
107
108
109
110
111
112
113
114
115
116
117

118
119
120
121
122
123
124
125
126
127
128
129

130
131
132
133
134

135
136
137
138
139

names(Counts_ToyExample)

Counts of the first genes
head(Counts_ToyExample$counts)

Histogram of the counts
hist(Counts_ToyExample$counts)
hist(log10(Counts_ToyExample$counts))

Write the count table to a file
write.table(Counts_ToyExample$counts, "Counts_ToyExample.tsv", quote=F,
Sep:" II)

HHHBHABHA B HH B HA B H AR H B H AR BHHBHHBHHBHHHH HHH HHH HHHHHHHHHHHH H H RH HHRHHH
HHtH

Differential expression analysis of real data with edgeR R Bioconductor
package #

HHHBHABHA B HHBH BB H AR H B R B B HHBHHBHHBHH HHH HHH HHHHHHHHHHHHHH HH RH HHRHHH
HHtH

library("edgeR")

HEHHHH
Preprocessing
HEHHHH

Read file with read counts
Counts=read.table(file="../Data/Dsim_count_table.tsv", header=T, row.names=1)
head(Counts)

Number of genes

dim(Counts)

Keep those genes that were expressed in at a reasonable level (25 pairs) 1in
all samples

KeptCounts=Counts[rowSums(Counts>=25)==6,]

Number of kept genes

dim(KeptCounts)

HBHH AR HH AR H AR R R
Pair wise DE analysis
HBHH AR HH AR H AR R R
an example

"Treatment" groups

Group_Pw=factor(c("C15","C15", "C15","C23","C23","C23"))

Tell R that a variable is nominal by making it a factor. The factor stores the
nominal values as a vector of integers in the range [1... k] (where k is the
number of unique values in the nominal variable), and an internal vector of
character strings (the original values) mapped to these integers.

Differential Expression list

DE_list_PW=DGEList(KeptCounts, group=Group_PW)

DGElist data class

edgeR stores data in a simple list-based data object called a DGEList. This
type of object is

easy to use because it can be manipulated like any 1ist in R.

TMM -- Trimmed Mean of M-values -- normalization of read counts
DE_list_Pw=calcNormFactors(DE_list_PW, method=c("TMM"))

The calcNormFactors function normalizes for RNA composition by finding a set
of scaling

140

141

142
143

144
145
146
147
148
149
150
151

152
153

154

155

156

157

158

159

160
161

162
163
164
165
166
167

168
169
170
171
172
173
174

175
176

177

178

179

180
181

factors for the library sizes that minimize the log-fold changes between the
samples for most

genes. The default method for computing these scale factors uses a trimmed
mean of M-

values (TMM) between each pair of samples [*]

[*]: Robinson, M.D. and Oshlack, A. (2010). A scaling normalization method for
differential

expression analysis of RNA-seq data. Genome Biology 11, R25.

Estimating dispersions for the pair wise DE analysis
DE_list_Pw=estimateCommonDisp(DE_list_PW)
DE_list_Pw=estimateTrendedDisp(DE_list_PW)

DE_list_ Pw=estimateTagwiseDisp(DE_list_ PW)

Pseudo counts

In general, edgeR functions work directly on the raw counts. For the most
part, edgeR does

not produce any quantity that could be called a “normalized count”.

An exception is the internal use of pseudo-counts by the classic edgeR
functions estimateCommonDisp

and exactTest. The exact negative binomial test [*] computed by exactTest and
the con-

ditional likelihood [*] used by estimateCommonDisp and estimateTagwiseDisp
require the

library sizes to be equal for all samples. These functions therefore compute
normalized counts

called pseudo-counts by the method of Robinson and Smyth [*]. The pseudo-
counts are

computed for a specific purpose, and their computation depends on the
experimental design

as well as the library sizese. Users are therefore disuaded from interpreting
the psuedo-counts

as general purpose normalized counts.

[*]: Robinson, M.D. and Smyth, G.K. (2008). Small-sample estimation of
negative binomial

dispersion, with applications to SAGE data. Biostatistics 9, 321-332.

Average log2 CPM (Counts per million)

log-CPM value for each count:

log2((rgi + 0.5)/Ri+1)x10/6)

rgi: read(pair) count of gene g for sample 1

Ri: the total number of mapped read(pair)s for sample i (i.e. the library size
of sample 1)

DE testing with tagwise dispersion

DE_list_PW.tgw=exactTest(DE_list_PW, dispersion="tagwise", pair=c("C15","C23"))
Once negative binomial models are fitted and dispersion estimates are
obtained, we can proceed with testing

procedures for determining differential expression using the exact test.

The exact test 1is only applicable to experiments with a single factor.

edgeR uses the quantile-adjusted conditional maximum likelihood (qCML) method
for ex-

periments with single factor.

Compared against several other estimators (e.g. maximum likelihood estimator,
Quasi-

likelihood estimator etc.) using an extensive simulation study, qCML is the
most reliable in

terms of bias on a wide range of conditions and specifically performs best in
the situation

of many small samples with a common dispersion, the model which is applicable
to Next-

Gen sequencing data.

The qCML method calculates the likelihood by conditioning on the total counts

181 for each

182 # tag, and uses pseudo counts after adjusting for library sizes.

183

184 ## Which genes were differentially expressed according to the Benjamini-Hochberg
corrected p-values?

185 Result=DE_list_PW.tgw$table

186 Result$adj.PvValue=p.adjust(Result$PValue, method="BH")

187 Up=Result[Result$adj.PValue<0.05 & Result$logFC>0 ,]

188 Down=Result[Result$adj.PValue<0.05 & Result$logFC<0 ,]

189

190 # Write the DE genes and the Result table to files

191 write(rownames(Up), "DE_Up_genes.txt")

192 write(rownames(Down), "DE_Down_genes.txt")

193 write.table(Result, "Result.tsv", sep="\t")

194

