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# Mapping and counting RNA-seq reads with Rsubread R Bioconductor package #
B B B L R e e

HitHHH

# Toy example

HitHHH

# small sample of reads (56,168 read-pairs) from a single replicate

# sequencing: strand specific, paired-end, Illumina, 100-100nts

# small chromosome fragment (1-839990 nt part of the 3L chromosome of Drosophila
simulans contains 96 genes)

HEHITH

# Mapping

HEHITH

# Call Rsubread library
library(Rsubread)

# Indexing reference genome
buildindex(basename="Genome_sequence_ToyExample_index",
reference="../Data/Genome_sequence_ToyExample.fa", memory=1500)

# p7 at Rsubread.pdf: An index needs to be built before read mapping can be
performed. This function creates a hash

# table for the reference genome, which can then be used by Subread and Subjunc
aligners for read

# alignment.

# Highly repetitive subreads (or uninformative subreads) are excluded from the
hash table so as to

# reduce mapping ambiguity.

HEHHH?

# Check how many uninformative subreads were found!

# Open Genome_sequence_ToyExample.fa fasta file with "less'" unix command in
another terminal.

# Can you see potential uninformative regions in the genome?

HEHHH?

# Mapping reads

subjunc(index="Genome_sequence_ToyExample_index",
readfilel="../Data/Trimmed_reads_ToyExample_1.fq",
readfile2="../Data/Trimmed_reads_ToyExample_2.fq",

input_format="FASTQ",

output_format="BAM", output_file="Mapped_reads_ToyExample.BAM",

nthreads=1, phredOffset=64, unique=TRUE,

minFraglLength=50, maxFragLength=10000, PE_orientation="fr")

# p2 at Rsubread.pdf: Subjunc perform global alignments. The seed-and-vote
paradigm

# enables efficient and accurate alignments to be carried out."

## phredoffset: sanger 33; illumina 64

## PE_orientation: character string giving the orientation of the two reads from
the same pair. It

# has three possible values including fr, ff and rf. Letter f denotes the
forward

# strand and letter r the reverse strand. fr by default (ie. the first read in
the pair

# 1s on the forward strand and the second read on the reverse strand).

HHUHBH?
# Copy the "Summary" here!
HHUHBH?
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HEHITH

# Counting

HEHITH

Counts_ToyExample=featureCounts(files="Mapped_reads_ToyExample.BAM",
annot.ext="../Data/Genome_annotation_ToyExample.gtf", isGTFAnnotationFile=T,

GTF.featureType="exon", GTF.attrType="gene_id", useMetaFeatures=T,
isPairedEnd=T, requireBothEndsMapped=T, checkFragLength=F, nthreads=1,
strandSpecific=2, reportReads=T)

# pl2 at Rsubread.pdf: This function assigns mapped sequencing reads to genomic
features

## GTF.featureType: a character string giving the feature type used to select
rows in the

# GTF annotation which will be used for read summarization. exon by default.

## GTF.attrType: a character string giving the attribute type in the GTF
annotation which will be

# used to group features (eg. exons) into meta-features (eg. genes). gene_id by
# default.

## useMetaFeatures: logical indicating whether the read summarization should be
performed at the

# feature level (eg. exons) or meta-feature level (eg genes). If TRUE, features
in

# the annotation (each row is a feature) will be grouped into meta-features
using

# their values using the “gene_id" attribute in the GTF-format annotation file,
and reads will assiged

# to the meta-features instead of the features.

## requireBothEndsMapped: logical indicating if both ends from the same fragment
are required to be

# successfully aligned before the fragment can be assigned to a feature or
metafeature.

## checkFragLength: logical indicating if the two ends from the same fragment
are required to satisify

# the fragment length criteria before the fragment can be assigned to a feature
or

# meta-feature. The fragment length criteria are specified via minFraglLength and
maxFragLength.

## strandSpecific: integer indicating if strand-specific read counting should be
performed. It has

# three possible values: 0 (unstranded), 1 (stranded) and 2 (reversely
Stranded).

## reportReads: logical indicating if read counting result for each
read/fragment is saved to a

# file. If TRUE, read counting results for reads/fragments will be saved to a
tab-

# delimited file that contains four columns including name of read/fragment,
sta-

# tus(assigned or the reason if not assigned), name of target feature/meta-
feature

# and number of hits if the read/fragment is counted multiple times. Name of the
# file is the same as name of the input read file except a suffix
‘.featureCounts’ 1is

# added. Multiple files will be generated if there is more than one input read
file.

HEHHH?

# What pecentage of the reads were counted in total?

HEHHH?

# pl6 at Rsubread.pdf: Description of featureCounts variable

# Names of objects of the featureCounts variable
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names(Counts_ToyExample)

# Counts of the first genes
head(Counts_ToyExample$counts)

# Histogram of the counts
hist(Counts_ToyExample$counts)
hist(log10(Counts_ToyExample$counts))

# Write the count table to a file
write.table(Counts_ToyExample$counts, "Counts_ToyExample.tsv", quote=F,
Sep:" II)

HHHBHABHA B HH B HA B H AR H B H AR BHHBHHBHHBHHHH HHH HHH HHHHHHHHHHHH H H RH HHRHHH
HHtH

# Differential expression analysis of real data with edgeR R Bioconductor
package #

HHHBHABHA B HHBH BB H AR H B R B B HHBHHBHHBHH HHH HHH HHHHHHHHHHHHHH HH RH HHRHHH
HHtH

library("edgeR")

HEHHHH
# Preprocessing
HEHHHH

# Read file with read counts
Counts=read.table(file="../Data/Dsim_count_table.tsv", header=T, row.names=1)
head(Counts)

# Number of genes

dim(Counts)

# Keep those genes that were expressed in at a reasonable level (25 pairs) 1in
all samples

KeptCounts=Counts[rowSums(Counts>=25)==6, ]

# Number of kept genes

dim(KeptCounts)

HBHH AR HH AR H AR R R
# Pair wise DE analysis #
HBHH AR HH AR H AR R R
# an example

## "Treatment" groups

Group_Pw=factor(c("C15","C15", "C15","C23","C23","C23"))

# Tell R that a variable is nominal by making it a factor. The factor stores the
nominal values as a vector of integers in the range [ 1... k ] (where k is the
number of unique values in the nominal variable), and an internal vector of
character strings (the original values) mapped to these integers.

## Differential Expression list

DE_list_PW=DGEList(KeptCounts, group=Group_PW)

## DGElist data class

# edgeR stores data in a simple list-based data object called a DGEList. This
type of object is

# easy to use because it can be manipulated like any 1ist in R.

## TMM -- Trimmed Mean of M-values -- normalization of read counts
DE_list_Pw=calcNormFactors(DE_list_PW, method=c("TMM"))

# The calcNormFactors function normalizes for RNA composition by finding a set
of scaling
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# factors for the library sizes that minimize the log-fold changes between the
samples for most

# genes. The default method for computing these scale factors uses a trimmed
mean of M-

# values (TMM) between each pair of samples [*]

# [*]: Robinson, M.D. and Oshlack, A. (2010). A scaling normalization method for
differential

# expression analysis of RNA-seq data. Genome Biology 11, R25.

## Estimating dispersions for the pair wise DE analysis
DE_list_Pw=estimateCommonDisp(DE_list_PW)
DE_list_Pw=estimateTrendedDisp(DE_list_PW)

DE_list_ Pw=estimateTagwiseDisp(DE_list_ PW)

## Pseudo counts

# In general, edgeR functions work directly on the raw counts. For the most
part, edgeR does

# not produce any quantity that could be called a “normalized count”.

# An exception is the internal use of pseudo-counts by the classic edgeR
functions estimateCommonDisp

# and exactTest. The exact negative binomial test [*] computed by exactTest and
the con-

# ditional likelihood [*] used by estimateCommonDisp and estimateTagwiseDisp
require the

# library sizes to be equal for all samples. These functions therefore compute
normalized counts

# called pseudo-counts by the method of Robinson and Smyth [*]. The pseudo-
counts are

# computed for a specific purpose, and their computation depends on the
experimental design

# as well as the library sizese. Users are therefore disuaded from interpreting
the psuedo-counts

# as general purpose normalized counts.

# [*]: Robinson, M.D. and Smyth, G.K. (2008). Small-sample estimation of
negative binomial

# dispersion, with applications to SAGE data. Biostatistics 9, 321-332.

## Average log2 CPM (Counts per million)

# log-CPM value for each count:

# log2((rgi + 0.5)/Ri+1)x10/6)

# rgi: read(pair) count of gene g for sample 1

# Ri: the total number of mapped read(pair)s for sample i (i.e. the library size
of sample 1)

## DE testing with tagwise dispersion

DE_list_PW.tgw=exactTest(DE_list_PW, dispersion="tagwise", pair=c("C15","C23"))
# Once negative binomial models are fitted and dispersion estimates are
obtained, we can proceed with testing

# procedures for determining differential expression using the exact test.

# The exact test 1is only applicable to experiments with a single factor.

# edgeR uses the quantile-adjusted conditional maximum likelihood (qCML) method
for ex-

# periments with single factor.

# Compared against several other estimators (e.g. maximum likelihood estimator,
Quasi-

# likelihood estimator etc.) using an extensive simulation study, qCML is the
most reliable in

# terms of bias on a wide range of conditions and specifically performs best in
the situation

# of many small samples with a common dispersion, the model which is applicable
to Next-

# Gen sequencing data.

# The qCML method calculates the likelihood by conditioning on the total counts




181 for each

182 # tag, and uses pseudo counts after adjusting for library sizes.

183

184 ## Which genes were differentially expressed according to the Benjamini-Hochberg
corrected p-values?

185 Result=DE_list_PW.tgw$table

186 Result$adj.PvValue=p.adjust(Result$PValue, method="BH")

187 Up=Result[Result$adj.PValue<0.05 & Result$logFC>0 , ]

188 Down=Result[Result$adj.PValue<0.05 & Result$logFC<0 , ]

189

190 # Write the DE genes and the Result table to files

191 write(rownames(Up), "DE_Up_genes.txt")

192 write(rownames(Down), "DE_Down_genes.txt")

193 write.table(Result, "Result.tsv", sep="\t")

194




