

Epigenetics

Genetics and Population Genetics

Máté Varga - Department of Genetics

21.10.2024

A real "monster" (Peloria) and the origins of epigenetic research

In 1742 on the island of Roslagen a weird morph of toadflax (*Linaria vulgaris*) was discovered.

"Surely this is at least as remarkable as a cow giving birth to a calf with a wolf's head." (Carl Linnaeus, 1744)

Toadflax floral symmetry: the oldest example of epigenetic inheritance

- Toadflax (*Linaria vulgaris*) plants normally have flowers with bilateral symmetry, but some plants have flowers with radial symmetry.
- Plants with radial flowers sometimes have offspring with bilateral flowers, but the inheritance pattern is nowhere close to the mendelian ratio.
- Floral symmetry is linked to the function of the CYCLOIDEAlike (Lcyc) gene, but this genes seems to be intact in plants with radial flowers!

Expansion in the methylation of a nearby TE can spread into the *Lcyc* locus.

Conrad Waddington's epigenetic landscape

Conrad Hal Waddington (1905 – 1975)

- Cells in different tissues express different sets of genes, but they all have the same genome.
- **Epigenetics** (original meaning / Waddington) = the genetic regulation of epigenesis
- Epigenetics (as we use today / Robin Holliday) = non-genetic (but heritable) changes in the hereditary material that affect gene expression
- Epigenetic modifications have a major role in deciding which genes are transcribed at a given timepoint in a cell.

Position-effect variegation: a matter of chromatin accessibility

Chromatin organization

Chromatin organization and differentiation

Epigenetic regulation of gene expression

Epigenetic regulation of gene expression

Maintaining and erasing DNA methylation during replication

Maintaining and erasing DNA methylation

TET - Ten Eleven Translocase family

TDG - Thymine DNA Glycosylase

BER – Base Excision Repair

AID/APOBEC – cytidine deaminases

Epigenetic histone modifications

Inactive state: acetylation (Ac) - lysine (K) 12 (histone 4 - H4) and methylation (Me) K9, K27 (H3)

Active state: acetylation - K9, K14 (H3), K5 (H4), methylation - K4 (H3), arginine (R) 3 (H4)

Epigenetic histone modifications and gene expression

Epigenetics of *Hox* cluster activation

The dynamic epigenetic landscape during development

Promoter modifications are similar across Metazoa

Bivalent epigenetic modifications

- most often occur at developmental genes
- the bivalent modifications get resolved over time

Changes in methylation during development

The role of parental imprinting in development

Repressive epigenetic signals can catalyze each other

Transcription can be repressive

(PcG = Polycomb Group Protein; TrxG = Trithorax Group Protein)

X chromosome inactivation (XCI): a classic example for repressive transcription

Conditions linked to X chromosome inactivation

Blaschko's lines. The visual appearance of X-linked skin disease can follow the pattern of lines described by the dermatologist Alfred Blaschko.

The hyperpigmentation stage of incontinentia pigmenti

Epigenetics and disease

(Zoghbi and Beaudet, 2006 CSH Perspect Biol)

Epigenetics and disease

Wildtype

Sotos syndrome (NSD1)

Tatton-Brown-Rahman syndrome (DNMT3A)

Excessive physical growth during first years of life.

Overgrowth / intellectual disability syndrome characterized by length/height and/or head circumference ≥2 standard deviations above the mean for age and sex, obesity.

(Li et al., 2021 *EMBO Rep*)

The epigenetics of aging

In *general* heterochromatin loosens up during aging, and there are less repressive epigenetic modification.

The epigenetics of aging and disease

- While most sites become hypomethylated, there are some that will be hypermethylated (and consequently some genes are silenced).
- Transposons become overactive, with deleterious consequences.

Epigenetic clocks

The right combination of hypo- and hypermethylated sites can predict the age of the sample tissue with high accuracy

(Gopalan et al., 2017 Genetics) (Horvath and Raj, 2018 Nat Rev Gen)

The agouti color: a classic example for non-mendelian, epigenetic inheritance

- The A^{vy} locus carries a retrotransposon (there are thousands of this in the genome, usually in a methylated form)
- Interestingly the retrotransposon in the agouti promoter is metastable - if it becomes hypomethylated acts as a cryptic constitutive promoter.
- The five mice on the picture have exactly the same allelic combination, their differences are epigenetic
- Agouti mice are not only lighter, but also heavier (pleiotropic effects)

The agouti color: a classic example for non-mendelian, epigenetic inheritance

