

The genetics of body axis formation Genetics and Population Genetics

Máté Varga - Department of Genetics

14.10.2024

First genetic screen to study embryonic development: 1978-1980 Heidelberg

Christiane Nüsslein-Volhard

Eric Wieschaus

Zygotic genes involved in the formation of the antero-posterior (AP) axis

Zygotic genes involved in the formation of the antero-posterior (AP) axis

gap genes

BUT: what regulates the expression of *gap* genes?

Looking for maternal mutants

Looking for maternal mutants

Localization of maternal mRNAs with the help of microtubules

(*Drosophila* oogenesis)

The 3'UTR of the bcd mRNA is involved in mRNA localisation

No 3' UTR bicoid mRNA

(Gottlieb et al., 1992 PNAS)

Secondary structure of the *bicoid* mRNA 3' UTR

Looking for maternal mutants

mRNA

protein

Bicoid and Nanos are the regulators of *hunchback*

Segmentation networks in *Drosophila*

Segmentation in *Drosophila*: the regulation of the even-skipped (eve) gene

Segment identity: homeotic mutants

- the *bithorax* mutation

- the antennapedia mutation

Segment identity: homeotic mutants

Segment identity: the *bithorax* complex

Edward B. Lewis

Segment identity: Hox genes

Hox genes are regulated by gap genes

Hox genes (Ubx) and evolution of the arthropod bodyplan

(Liubicich et al., 2009 PNAS)

Hox genes and the evolution of the arthropod bodyplan: uropods

The *Hox* cluster is (almost) universal amongst animals

Homeotic mutants in vertebrates

(McIntyre et al., 2007 Development)

Homeotic mutants in vertebrates

(A) Giraffe

sloths manatees

14.17: © Bone Clones, www.boneclones.com. (Varela Lasheras et al., 2011 EvoDevo)

Hox genes and vertebrate evolution

hoxc6 expression pattern

The AP axis formation in *Drosophila* and vertebrates is fundamentally different

In a *Drosophila* embryo the primordia of all future segments are present from the very beginning (this is not general even for insects = "long germ insect")

In vertebrates by the end of gastrulation only the anterior structures are specified and later segments arise from the growth zone of the embryonic tailbud.

Hox genes and colineartity

- **Temporal colinearity**: *Hox* genes that more 3' in the cluster are expressed earlier

- **Spatial colinearity**: *Hox* genes that more 3' in the cluster are expressed more anteriorly

Temporal colinearity is dependent on the relative position to the telomeres and centromeres

The closer the telomere, the faster the activation of a given *Hox* gene can be observed.

The proximity of the centromere inhibits *Hox gene expression.*

Temporal colinearity is dependent on the relative position to the telomeres and centromeres

Spatial colinearity is dependent on local interactions

Spatial colinearity is dependent on local interactions

The Spemann-Mangold experiment and the discovery of the dorsal organizer (1924)

Hilde Mangold (née Pröschold)

Hans Spemann

The Spemann-Mangold organizer expresses BMP antagonists

noggin Smith and Harland (1992)

chordin - Sasai et al. (1994)

The role of BMPs in the specification of the future nervous system

The Nieuwkoop centre and the origins of dorso-ventral (DV) polarity

Ectopic induction of canonical Wnt-pathway mimics the organizer

The urbilaterian origin of DV patterning mechanisms

The urbilaterian origin of DV patterning mechanisms

Dorsal is present in all cells, but it is nuclear only in the cells of the ventral side

spätzle (spz) and cactus (cact) – regulators of dorsal

Localisation of Dorsal in DV mutants

- Dorsal and Cactus are the *Drosophila* orthologs of NF-K β and IF-K β
- Extracellular cleavage of Spätzle is necessary for its function
- => The follicular cells surrounding the oocytes also have an important role in DV axis formation!

Maternal determination of the future dorsal side by gurken

gurken mRNA

Gurken protein

a Microtubule populations in the Drosophila melanogaster oocyte

The genetics of *Drosophila* DV polarity

- Oocyte nucleus travels to anterior dorsal side of oocyte. It synthesizes gurken mRNA which remains between the nucleus and the follicle cells.
- 2 gurken messages are translated. The Gurken protein is received by Torpedo proteins during mid-oogenesis.
- Torpedo signal causes follicle cells to differentiate to a dorsal morphology.
- Synthesis of Pipe protein is inhibited in dorsal follicle cells.
- Gurken protein does not diffuse to ventral side.
- Ventral follicle cells synthesize Pipe proteins.
- 6 In ventral follicle cells, Pipe completes the modification of unknown factor (x).
- Nudel and factor (x) interact to split the Gastrulation-deficient (Gd) protein.
- 8 The activated Gd protein splits the Snake protein, and the activated Snake protein cleaves the Easter protein.
- The activated Easter protein splits Spätzle; activated Spätzle binds to Toll receptor protein.
- Toll activation activates Tube and Pelle, which phosphorylate the Cactus protein. Cactus is degraded, releasing it from Dorsal.
- Dorsal protein enters the nucleus and ventralizes the cell.

