GENETICS AND POPULATION GENETICS

Genetic polymorphisms

ELTE Faculty of Sciences Department of Genetics

First genetic marker: ABO blood group system

Landsteiner, 1900

FELIX BERNSTEIN (1933)

Two	hypotheses	of bloo	d group	inheritance	
-----	------------	---------	---------	-------------	--

Crown	VON DUN	GERN and HIRZFELD		BERNSTEIN	Observed
Group	Genotype	Expected proportion	Genotype	Expected proportion	proportion
0	aa bb	$p_a^2 p_b^2$	00	p_0^2	0.294
A	A-bb	$(1 - p_a^2)p_b^2$	AA, OA	$p_{\Lambda}^2 + 2p_{\Omega}p_{\Lambda}$	0.422
в	aa B-	$p_a^2 (1 - p_b^2)$	BB, OB	$p_{\rm B}^2 + 2p_{\rm O}p_{\rm B}$	0.206
AB	A-B-	$(1 - p_a^2)(1 - p_b^2)$	AB	$2p_Ap_B$	0.078
Total		1		1	1.000

The expected proportions assume Hardy-Weinberg ratios and linkage equilibrium. The observed proportions are from 502 Japanese (BERNSTEIN 1925).

- L-Fucose
- D-Galactose
- N-Acetylgalactosamine
- A N-Acetylglucosamine

AB0 antigének kialakulása

Various Alleles at the ABO Locus

Exon Number		5								7						
Nucleotide Position	2 6 1	2 9 7	4 6 7	5 2 6	6 4 6	6 5 7	6 8 1	7 0 3	7 7 1	7 9 6	8 0 2	8 0 3	8 2 9	8 7 1	9 3 0	
A alleles				-												
A101	G	\mathbf{A}	\mathbf{C}	\mathbf{C}	\mathbf{T}	\mathbf{C}	\mathbf{G}	G	\mathbf{C}	\mathbf{C}	\mathbf{G}	G	G	G	G	\boldsymbol{C}
A102	*	*	Т	*	*	*	*	*	*	*	*	*	*	*	*	*
A201	*	*	Т	*	*	*	*	*	*	*	*	*	*	*	*	*
A301	*	*	*	*	*	*	*	*	*	*	*	*	*	A	*	*
Ax01	*	*	*	*	A	*	*	*	*	*	*	*	*	*	*	*
cis-AB01	*	*	Т	*	*	*	*	*	*	*	*	C	*	*	*	*
B alleles									0							
B101	*	\mathbf{G}	*	G	*	т	*	A	*	A	*	С	*	*	\mathbf{A}	*
B301	*	G	*	G	*	\mathbf{T}	*	A	*	A	*	С	*	*	\mathbf{A}	Т
B(A)01	*	G	*	G	*	*	*	*	*	A	*	С	*	*	\mathbf{A}	*
O alleles																
O01	Δ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
002	Δ	G	*	*	\mathbf{A}	*	\mathbf{A}	*	Т	*	*	*	\mathbf{A}	*	*	*
O03	*	G	*	G	*	*	*	*	*	*	A	*	*	*	*	*
le je	shift	nge				mee	nee		nge				V		unge	11
ang ang	me	chi	19	790	19	chi	chi	355	chi	9	58	584	E	16	ché	No.
	2	0	4		5	0	0	2	0	2	5	2	21	E CI	0	C

First results of Human Genome Project

- First draft in 2001 (Science, Nature)
- The most large whole genome determined
- Structure and organisation similare to each eukaryotes (model organizms)
- Unexpectedly low amount of protein coding genes (~2000)
- Emerging number of RNA genes (snRNA, lcnRNA, miRNA)
- Low amount of protein coding sequences (exons): < 1 %
- Excess amount of repetitive sequences: Mobile elements?

RECOMBINATION

Drive of polymorphisms:

- Single nucleotide mutation
- Sequence re-arrangement

Human Evolutionary Genetics, Jobling, 2004

ARTICLE

A global reference for human genetic variation

The 1000 Genomes Project Consortium*

The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.

An integrated map of structural variation in 2,504 human genomes

A list of authors and their affiliations appears at the end of the paper.

Structural variants are implicated in numerous diseases and make up the majority of varying nucleotides among human genomes. Here we describe an integrated set of eight structural variant classes comprising both balanced and unbalanced variants, which we constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks in 26 human populations. Analysing this set, we identify numerous gene-intersecting structural variants exhibiting population stratification and describe naturally occurring homozygous gene knockouts that suggest the dispensability of a variety of human genes. We demonstrate that structural variants are enriched on haplotypes identified by genome-wide association studies and exhibit enrichment for expression quantitative trait loci. Additionally, we uncover appreciable levels of structural variant complexity at different scales, including genic loci subject to clusters of repeated rearrangement and complex structural variants with multiple breakpoints likely to have formed through individual mutational events. Our catalogue will enhance future studies into structural variant demography, functional impact and disease association.

| NATURE | VOL 526 | 1 OCTOBER 2015

IGSR: The International Genome Sample Resource

Supporting open human variation data

Home About Data Help

The International Genome Sample Resource

The 1000 Genomes Project created a catalogue of common human genetic variation, using openly consented samples from people who declared themselves to be healthy. The reference data resources generated by the project remain heavily used by the biomedical science community.

The International Genome Sample Resource (IGSR) maintains and shares the human genetic variation resources built by the 1000 Genomes Project. We also update the resources to the current reference assembly, add new data sets generated from the 1000 Genomes Project samples and add data from projects working with other openly consented samples.

					me araaa feraal	with the s	a.mra (a.m)	
	tural variation Consortium, Phase 3		ACB		A: 0.151 (29) G: 0.849 (163)	AIA: 0 GIG: 0	0.042 (4) 0.740 (71)	AIG: 0.219 (21)
	The Human Generic Bitweard Matadon Consortium (HGRVG), funded by NHGR(have built variation decovery and 30x strat-ward data generated by NYGC. This photo-of the HGSVG is in progress and expands to additional human generates value are	In their earlier work published in 2019 and 2021 opposing multiple technologies for structural	ASW		A: 0.230 (28) G: 0.770 (94)	AIA: I GIG: I	0.066 (4) 0.607 (37)	AIG: 0.328 (20)
North 4 7 2 0 8 5 Asia 3 2	Raw pre GC and unvalcated data can be found on the HGB/CO ISSR FTP site.		ESN		A: 0.066 (13) G: 0.934 (185)	AIA: (GIG:	0.010 (1) 0.879 (87)	AIG: 0.111 (11)
Am ca Melalitadula 2 2 0 9 2 3 tote		16 populations	GWD		A: 0.066 (15)	AIA: (0.009 (1)	AIG: 0.115 (13)
Explore the data sets in IGSR through our		CSVC data	Nex LWK	View varia	nts in ger	nomic c	ontex	t in12 (18)
data portal	Harriso ACCCSS III	GOVO Udala Apulations Generatin in variente Dife trin, The Gentile - Mendinitie Mendin In Gentile - Mendinitie	MSL		Ensen		0.047 (4)	GIG: 0.953 (81)
3 14	HEBRIT	there in Nigeria	YRI	a second and a second se	A: 0.079 (17)	AIG:	0.157 (17)	GIG: 0.843 (91)
South	NA 1975	Caloritana in Massilin, Coloritale			G: 0.921 (199)	N		
2 Afronica	GWIEGPO	Peruder in Line, Peru	AMR		A: 0.365 (253)	AIA:	0.147 (51)	AIG: 0.435 (151)
	14CB/MM	. Sn Lanker Tent in the UK			G: 0.635 (441)	GIG:	0.418 (145)	

https://www.internationalgenome.org/

Population sampling

nature

A global reference for human genetic variation

The 1000 Genomes Project Consortium*

ARTICLE

	AF	R	AN	MR .	E/	AS	EL	JR	S	AS
Samples Mean coverage	6	i61 3.2	3	847 7.6	5	504 7.7	5	503 7.4	4	89 8.0
	Var. sites	Singletons								
SNPs	4.31M	14.5k	3.64M	12.0k	3.55M	14.8k	3.53M	11.4k	3.60M	14.4k
Indels	625k	-	557k	-	546k	-	546k	-	556k	-
Large deletions	1.1k	5	949	5	940	7	939	5	947	5
CNVs	170	1	153	1	158	1	157	1	165	1
MEI (Alu)	1.03k	0	845	0	899	1	919	0	889	0
MEI (L1)	138	0	118	0	130	0	123	0	123	0
MEI (SVA)	52	0	44	0	56	0	53	0	44	0
MEI (MT)	5	0	5	0	4	0	4	0	4	0
Inversions	12	0	9	0	10	0	9	0	11	0
Nonsynon	12.2k	139	10.4k	121	10.2k	144	10.2k	116	10.3k	144
Synon	13.8k	78	11.4k	67	11.2k	79	11.2k	59	11.4k	78
Intron	2.06M	7.33k	1.72M	6.12k	1.68M	7.39k	1.68M	5.68k	1.72M	7.20k
UTR	37.2k	168	30.8k	136	30.0k	169	30.0k	129	30.7k	168
Promoter	102k	430	84.3k	332	81.6k	425	82.2k	336	84.0k	430
Insulator	70.9k	248	59.0k	199	57.7k	252	57.7k	189	59.1k	243
Enhancer	354k	1.32k	295k	1.05k	289k	1.34k	288k	1.02k	295k	1.31k
TFBSs	927	4	759	3	748	4	749	3	765	3
Filtered LoF	182	4	152	3	153	4	149	3	151	3
HGMD-DM	20	0	18	0	16	1	18	2	16	0
GWAS	2.00k	0	2.07k	0	1.99k	0	2.08k	0	2.06k	0
ClinVar	28	0	30	1	24	0	29	1	27	1

Table 1 | Median autosomal variant sites per genome

See Supplementary Table 1 for continental population groupings. CNVs, copy-number variants; HGMD-DM, Human Gene Mutation Database disease mutations; k, thousand; LoF, loss-of-function; M, million; MEI, mobile element insertions.

- a typical genome differs from the reference human genome at 4.1 million to 5.0 million sites.
- >99.9% of variants consist of SNPs and short indels.
- structural variants affect more bases:
- typical genome contains an estimated 2,100 to 2,500 structural variants (1,000 large deletions, 160 copy-number variants, 915 Alu insertions, 128 L1 insertions, 51 SVA insertions, 4 NUMTs and 10 inversions) affecting 20 million bases of sequence.

Satellite DNA

Restriction Fragment Length Polymorphism (RFLP) - "DNA fingerprinting"

Double-stranded DNA DNA molecule Cleavage with one or more restriction enzymes Restriction enzymes Restriction fragments Gel electrophoresis Agarose gel electrophoresis Gel with fragments fractionated by size Flow buffer used Transfer to nitrocellulose filter Southern-blot to transfer DNA Gel Nitrocellulose filter Probe hibridization Autoradiogram Nitrocellulose filter with DNA fragments positioned identically to those in the gel - MLP-RFLP Hybridization with radioactively labeled DNA probe - SLP-RFLP Radioautograph showing hybrid DNA

VNTR assay markers: RFLP analytics

1985 - Sir Alec Jeffreys

ANALYSIS EXAMPLES

F and H Always inherited together — linked?

A and B In progeny, always either A or B - "allelic"?

A and D Four combinations; A and D, A, D, or neither — unlinked? F, H, and E Always *either* F and H *or* E — closely linked in trans? Allele P Possibly linked to I and C.

Genetic mapping

Mutation rate of polymorphic sequences (μ)

Microsatellite structure

Microsatellite evolution

Trinucleotide repeat expansion

Trinucleotide repeat expansion

Passarge, 2001

Genetic diseases due to repeat expansion

Disease (Examples)	Gene	Frequency	Tri - nucleotide	Normal Number	Mutant A l lele	Chromosome
Huntington disease	HD	1:10 000	(CAG) _n	0–26	36 - 121	4p16.3
Fragile X syndrome	FMR1	1:5 000	(CGG) _n	6–50	52-500	Xq27.3
Myotonic dystrophy	DMPK	1:8 000	(CTG) _n	5-37	50-500	19q13.2
Spinal-bulbar muscular atrophy (Kennedy)	SBMA	<1:50 000	(CAG) _n	11–31	36–65	Xq11-12

С

Ь

Fragile X Huntington disease Myotonic dystrophy Friedrich ataxia SMA etc.

d

B. Fragile site Xq27.3

Diagnostics of expanded CGG repeats in Fragile X

Passarge, 2001

Genotiping microsatellites by PCR

Microsatellite allele genotyping: multiallelic

Separate PCR products from various samples amplified with primers targeted to a particular STR locus

Polyacrylamide Gel

Find representative alleles spanning population variation

Microsatellite - STR - markers (Short Tandem Repeat)

Repeat region varies in length from alleles to alleles but flanking region where PCR primers bind is constant

Homozygous = two homologous are the same

Heterozygous = two homologous separate from each other

Primer binding sites determine the PCR product size!

Multiplex - PCR

(A) Simultaneous amplification of three locations on a DNA template

(B) Resolution of PCR products with size-based separation method

STR System	Maternal Meioses	Paternal Meioses	Number from	Total Number of	Mutation
	(%)	(%)	either	Mutations	Rate
CSF1PO	95/304,307 (0.03)	982/643,118 (0.15)	410	1,487/947,425	0.16%
FGA	205/408,230 (0.05)	2,210/692,776 (0.32)	710	3,125/1,101,006	0.28%
TH01	31/327,172 (0.009)	41/452,382 (0.009)	28	100/779,554	0.01%
ΤΡΟΧ	18/400,061 (0.004)	54/457,420 (0.012)	28	100/857,481	0.01%
VWA	184/564,398 (0.03)	1,482/873,547 (0.17)	800	2,480/1,437,945	0.17%
D3S1358	60/405,452 (0.015)	713/558,836 (0.13)	379	1,152/964,288	0.12%
D5S818	111/451,736 (0.025)	763/655,603 (0.12)	O 385	1,259/1,107,339	0.11%
D7S820	59/440,562 (0.013)	745/644,743 (0.12)	285	1,089/1,085,305	0.10%
D8S1179	96/409,869 (0.02)	779/489,968 (0.16)	364	1,239/899,837	0.14%
D13S317	192/482,136 (0.04)	881/621,1+6 (0.14)	485	1,558/1,103,282	0.14%
D16S539	129/467,774 (0.03)	540/494,465 (0.11)	372	1,041/962,239	0.11%
D18S51	186/296,244 (0.06)	1,094/494,098 (0.22)	466	1,746/790,342	0.22%
D21S11	464/435,388 (0.11)	772/526,708 (0.15)	580	1,816/962,096	0.19%
Penta D	12/18,701 (0.06)	21/22,501 (0.09)	24	57/41,202	0.14%
Penta E	29/44,311 (0065)	75/55,719 (0.135)	59	163/100,030	0.16%
D2S1338	15/72,830 (0.021)	157/152,310 (0.10)	90	262/225,140	0.12%
D19S433	38/70,001 (0.05)	78/103,489 (0.075)	71	187/173,490	0.11%
SE33 (ACTBP2)	0/330 (<0.30)	330/51,610 (0.64)	None reported	330/51,940	0.64%

STR loci mutation rate: $10^{-3} - 10^{-4}$ / meiosis

Distribution of polimorphic markers in the genome

Microsatellite point mutations

Variant microsatellite alleles: Null-alleles

Microsatellite allele frequency diagrams

How Statistical Calculations are Made

- Generate data with set(s) of samples from desired population group(s)
 - Generally only 100-150 samples are needed to obtain reliable allele frequency estimates
- Determine allele frequencies at each locus
 - Count number of each allele seen
- Allele frequency information is used to estimate the rarity of a particular DNA profile
 - Homozygotes (p²), Heterozygotes (2pq)
 - Product rule used (multiply locus frequency estimates)
 PM = (P1)(P2)...(Pn)

Breed identification?

STRUCTURE statistics

- 85 breeds (n=414)
- 95 microsatellites (dinucleotide repeat)
- 99% correct prediction!

Genetic Structure - Analysing of MOlaculare VAriance a, (AMOVA)

b,

			•	Bu	Ca	l								B	a	Ra)]	De	eR	0]	Bι	ıA	S					
Φ_{ST}	1 2	3 4	56	78	39	10 11	12	13 14	15	1 2	3	4	5	6 7	7 8	9	10	11	12 1	3 14	4 15	1	2 3	3 4	4 5	6	7	8 9) 10	11	12	13 14	4 15	1	2	3 4	4 5	6	7	8 9	9 10	11	12	13 1	14 1	15
BuCa																																														
BaRo																																														
DeRo																																														
BuAs																																					-				-					
alelölések:		(]	F _{st} ,	Φ_{ST}	r) >	· 0,0	02;	Р	<0	,1			(0,0)2	> ((Fg	st,	Φ	st)) >	0,0	01	; 0),0	1 <	< F	• <	0,	05					(F	ST,	Φ	ST) <	: 0,	01	; F	' >	0,	,0:	5

P									B	Bu	1	28	a													S	Sz	e	ke	ely	y													С	s	aı	ng	go)					
F _{ST}	1	1	2	3	4	5	ϵ	5 7	7	8	9	10	11	12	13	14	15	16	17	1	2	3	4	5	5 6	7	7 8	3 9	9 1	10 1	1 1	12	13	14	15	16	17	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
BuCa																																																						
Szekely																																																						
Csango																																																						

b,

P							B	u	C	a													S	ze	k	e	l y													Cs	sa	ną	go)					
Φ_{ST}	1	2	3	4 :	5 6	5 7	7 8	8 9	0 10	0 11	12	13	14	15	16 1	7	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	1	2	3	4	5	6	7 8	5	0 10) 1	1 12	13	14	15	16	17
BuCa																																															\Box		
Szekely																																																	
Csango																																																	
																			-				-																										_

Jelölések:

 $0,\!02 > (F_{ST},\, \Phi_{ST}) > 0,\!01; \ 0,\!01 < P < 0,\!05$

Human melanogenesis

Keratinocyte

Genes responsible for skin pigmentation

Locus	Chromosome	Protein	Mut phenotype	Function
Melanosome protei	ns			
TYR	11q14-11q21	Tyrosinase	OCA1	Oxidation of tyrosine
TYRP1	9p23	Gp75, TRYP1	OCA3	DHICA-oxidase, TYR stabilisation
DCT	13q32	DCT, TRYP2		Dopachrome tautomerase
OCA2	15q11.2-15q12	P-protein	OCA2 (eye)	pH of melanosome
SLC45A2	5p14.3-5q12.3	MATP, AIM-1	OCA4 (skin)	Melansome maturation
SLC24A5	15q21.1	Cation exchanger		Melanosome precursor
Signal proteins				
ASIP	20q11.2-20q12	Agouti signal protein		MC1R antagonist
MC1R	16q24.3	MSH receptor	Red hair (skin)	G-protein coupled receptor
POMC	16q24.3	MSH receptor	Red hair	MC1R antagonist
OA1	Xp22.3	OA1 protein	OA1	G-protein coupled receptor
MITF	3p12.3-3p14.1	MITF	Waardenburg	Transcription factor
Proteins involved in	n melanosome transport or upt	ake by keratinocytes		
MYO5A	15q21	MyosinVa	Griscelli	Motor protein
RAB27A	15q15-15q21.1	Rab27a	Griscelli	RAS family protein
HPS1	10q23.1-10q23.3	HPS1	Hermansky-Pudlak	Organelle biogenesis and size
HPS6	10q24.32	HPS6	Hermansky-Pudlak	Organelle biogenesis

Principal skin pigmentation candidate genes

ACTH: adrenocorticotrophin hormone; DCT: dopachrome tautomerase; DHICA: 5,6-dihydroxyindole-2-carboxylic acid; MATP: membrane-associated transporter protein; MC1R: melanocortin-1 receptor; MITF: microphthalmia-associated transcription factor; MSH: melanocyte stimulating hormone; OCA: oculocutaneous albinism; POMC: pro-opiomelanocortin; TYRP1: tyrosinase-related protein 1.

MC1R gene mutations

Mutation	Туре	Designation	Penetrance (odds ratio)	Functional significance	References (for functional significance and penetrance)
R151C	Mis-sense	R	63.3	Altered cellular location	[16,26]
R160W	Mis-sense	R	63.3	Altered cellular location	[16,26]
D294H	Mis-sense	R	63.3	Impaired G coupling ability	[26,27]
D84E	Mis-sense	R	63.3	Altered cellular location	[16,26]
1155T	Mis-sense	Lack of statistica ciation	al data—strong familial asso-	Altered cellular location	[16,26]
V92M	Mis-sense	r	5.1	Reduced a-MSH binding	[26,28,29]
V60L	Mis-sense	r	5.1	the second same is a state of the second state	[26]
R163Q	Mis-sense	r	5.1	Slightly reduced a-MSH binding	[26,29]
R142H	Mis-sense	Lack of statistica ciation	al data—strong familial asso-		[26]

Mutations in the MC1R gene, their penetrance and functional significance (where known)

- MC1R alleles possess different activity levels
- 317 AA and 7 transmembran domen
- SNPs: RHC phenotype neanderthal pigmentation
- Phenotype prediction? Genetic tests?

SNaPshot: A Primer Extension Assay Capable of Multiplex Analysis

Minisequencing (SNaPshot assay) Allele-specific primer extension across the SNP site with fluorescently labeled ddNTPs; mobility modifying tails can be added to the 5'-end of each primer in order to spatially separate them during electrophoresis.

(b) (TTTTT)-primer1 (chromosome 20)-ddT/ddT

(TTTTT)-(TTTTT)-primer2 (chromosome 6)-ddC/ddT

(TTTTT)-(TTTTT)-(TTTTT)-primer3 (chromosome 14)-ddC/ddT

(TTTTT)-(TTTTT)-(TTTTT)-primer4 (chromosome 1)-ddC/ddC

FIGURE 12.2 Allele-specific primer extension results using four autosomal SNP markers on two different samples (a). SNP loci are from separate chromosomes (1, 6, 14, and 20) and therefore unlinked. Electrophoretic resolution of the SNP primer extension products occurs due to poly(T) tails that are 5 nucleotides different from one another (b). Butler, J.M. (2011) Advanced Topics in Forensic DNA Typing, p. 354

SNP genotyping of 10 pigmentation genes (SNaPshot)

Sample	Self-reported pigmentary traits			rs12913832	rs1805007	rs1805008	OCA2	rs16891982	rs1426654	rs2031526	rs1545397	Inferred ancestry of individuals ^b		
	Eye color	Hair color	Skin color	HERC2	MCIK	MC IK	uplotype	5002472	5102475	ber	UCH2	European	Asian	African
E1	Blue	Red	Fair	G/G	C/C	C/T	TGT/TGT	G/G	A/A	G/G	A/A	0.963	0.012	0.024
E2	Green	Light brown	Fair	G/G	C/C	C/C	TGT/TGT	G/G	A/A	A/G	A/A	0.954	0.021	0.025
E3	Blue	Blond	Fair	G/G	C/C	C/C	TGT/TGT	G/G	A/A	A/G	A/A	0.954	0.024	0.022
E4	Blue	Blond	Fair	G/G	C/C	C/C	TGT/TGT	G/G	A/A	A/G	A/A	0.960	0.020	0.020
E5	Blue/gray	Auburn	Fair	G/G	C/T	C/C	TGT/TGT	G/G	A/A	G/G	A/A	0.961	0.013	0.026
E6	Green/gray	Light brown	Fair	G/G	C/C	C/C	TGT/TGT	C/G	A/A	G/G	A/A	0.787	0.038	0.175
E7	Green/hazel	Light brown	Fair	A/G	C/C	C/C	TGT/TGT	G/G	A/A	A/G	A/A	0.955	0.022	0.024
E8	Green/hazel	Dark brown	Fair	A/A	C/C	C/C	TGT/CTC	G/G	A/A	G/G	A/A	0.961	0.013	0.027
E9	Green/hazel	Dark brown	Fair	A/A	C/C	C/C	TTT/CTC	G/G	A/A	G/G	A/A	0.963	0.013	0.024
E10	Blue	Light brown	Fair	G/G	C/C	C/C	TGT/TGT	C/G	A/A	G/G	A/A	0.789	0.049	0.163
E11	Green	Auburn	Fair	G/G	C/T	C/C	TGT/TGC	G/G	A/A	G/G	A/A	0.958	0.014	0.028
E12	Blue/hazel	Light brown	Fair	A/G	C/C	C/C	TGT/TTT	G/G	A/A	G/G	A/A	0.962	0.012	0.026
E13	Blue/hazel	Light brown	Fair	A/G	C/C	C/C	TGT/TTT	G/G	A/A	G/G	A/A	0.965	0.013	0.022
E14	Green	Light brown	Fair	G/G	C/C	C/C	TGT/TGT	C/G	A/A	G/G	A/T	0.763	0.165	0.073
E15	Brown	Dark brown	Fair	A/G	C/C	C/C	TGT/TGT	G/G	A/A	A/G	A/A	0.957	0.022	0.021
E16	Brown	Dark brown	Fair	A/A	C/C	C/C	TGT/CTC	C/G	A/A	A/G	A/T	0.669	0.283	0.048
E17	Green/hazel	Dark brown	Medium	A/G	C/C	C/C	TGT/TTT	C/G	A/A	G/G	A/T	0.755	0.170	0.076
E18	Blue	Light brown	Fair	G/G	C/C	C/C	TGT/TGT	G/G	A/A	G/G	A/T	0.935	0.045	0.021
E19	Brown	Red	Fair	A/G	C/T	C/C	TGT/TGT	G/G	A/A	G/G	A/A	0.964	0.013	0.022
E20	Green	Light brown	Fair	G/G	C/C	C/C	TGT/TGT	C/G	A/A	G/G	A/A	0.792	0.047	0.161
E21	Green/gray	Blond	Fair	G/G	C/C	C/C	TGT/TGT	G/G	A/A	A/G	A/A	0.957	0.022	0.021
E22	Blue	Light brown	Fair	G/G	C/C	C/C	TGT/TGT	G/G	A/A	G/G	A/A	0.959	0.014	0.026
E23	Green/hazel	Light brown	Fair	A/G	C/C	C/C	TGT/TTT	G/G	A/A	A/G	A/A	0.957	0.020	0.022
E24	Green	Light brown	Fair	G/G	C/C	C/C	TGT/TGT	C/G	A/A	G/G	A/A	0.786	0.049	0.166
E25	Brown	Red	Fair	A/G	C/C	T/T	TGT/TGC	G/G	A/A	G/G	A/A	0.963	0.014	0.023
E26	Blue	Light brown	Fair	G/G	C/C	C/C	TGT/TGT	G/G	A/A	A/G	A/A	0.954	0.021	0.025
E27	Blue	Red	Fair	G/G	C/C	C/T	TGT/TGT	G/G	A/A	G/G	A/A	0.958	0.014	0.028
Afl	Brown	Black	Dark	A/A	C/C	C/C	TGC/TTC	C/C	G/G	A/G	A/A	0.028	0.094	0.878
Af2	Brown	Black	Dark	A/A	C/C	C/C	TGC/TTC	C/C	G/G	G/G	A/A	0.023	0.031	0.946
Af3	Brown	Black	Dark	A/A	C/C	C/C	TGC/TTC	C/C	A/G	G/G	A/A	0.164	0.041	0.795
Asl	-	-	-	A/A	C/C	C/C	TTT/CTC	C/C	G/G	A/G	A/T	0.042	0.649	0.308
As2	-		-	AA	C/C	C/C	CTC/CTC	C/C	G/G	A/G	T/T	0.020	0.921	0.060
As3	-	-	-	A/A	C/C	C/C	CTC/CTC	C/C	G/G	A/A	T/T	0.013	0.964	0.023
As4	-	-	-	A/G	C/C	C/C	TTT/CGC	C/C	A/G	A/A	A/T	0.212	0.708	0.080
As5	_	_	-	A/A	C/C	C/C	TTC/CGC	C/C	G/G	A/G	T/T	0.019	0.922	0.059
As6	-	-	-	A/A	C/C	C/C	CTC/CTC	C/G	G/G	A/A	T/T	0.119	0.858	0.023

E European modern sample, Af African modern sample, As Asian modern sample

^a OCA2 diplotype correspond to markers rs7495174/rs6497268/rs11855019. OCA2 diplotype and rs12913832 genotype predictive of blue eye color phenotype are underlined

^b Probability of being from European/Asian/African population determined using the STRUCTURE program. The greatest probability, most likely estimate of ancestry, is indicated in bold